Xingping Zhou , Silin Wu , Peng Liu , Liming Wang , Fengwei Xie
{"title":"甲基丙烯酸淀粉与甲基丙烯酸壳聚糖的混合生物链接使复杂组织支架的高精度3D打印成为可能","authors":"Xingping Zhou , Silin Wu , Peng Liu , Liming Wang , Fengwei Xie","doi":"10.1016/j.carbpol.2025.124023","DOIUrl":null,"url":null,"abstract":"<div><div>Starch-based gels represent promising bioinks for 3D-printed cell scaffolds due to their biosafety, biocompatibility, and biodegradability. However, their widespread adoption has been hindered by inadequate formability and poor self-supporting properties. Here, we introduce an innovative starch-dominated hydrogel system achieved through dual methacrylation of normal corn starch and chitosan, enabling the fabrication of biodegradable cell scaffolds. While methacrylated starch alone (substitution degree: 0.013) exhibited insufficient printing accuracy even with UV assistance, the optimized 10:1 (starch/chitosan, <em>w</em>/w) blend of methacrylated chitosan (substitution degree: 0.27) demonstrated dramatically enhanced 3D printing formability and precision when combined with UV crosslinking. Rheological analysis demonstrated that blending methacrylated starch with methacrylated chitosan reduced flow stress (<em>τ</em><sub>f</sub>), improving printability while retaining shear-thinning behavior. Incorporation of 10 % glycerol enhanced biomacromolecular compatibility, as evidenced by rheological results and homogenous microstructures in SEM, enabling high-fidelity printing of intricate architectures. UV-cured scaffolds exhibited tunable compressive strength (150–200 kPa) and deformation rate (50–60 %), balancing mechanical compliance with tissue safety. The material's hydrophilic surface (contact angle: 30–60°) supported robust cell adhesion, while <em>in vitro</em> assays confirmed exceptional biocompatibility (96 % cell viability) and controlled biodegradation in α-amylase/lysozyme solutions. This work establishes starch as a primary matrix for bioinks, advancing sustainable, high-precision 3D printing in biomedicine.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"367 ","pages":"Article 124023"},"PeriodicalIF":10.7000,"publicationDate":"2025-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid bioink of methyacrylated starch with minimal methacrylated chitosan enables high-precision 3D printing for complex tissue scaffolds\",\"authors\":\"Xingping Zhou , Silin Wu , Peng Liu , Liming Wang , Fengwei Xie\",\"doi\":\"10.1016/j.carbpol.2025.124023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Starch-based gels represent promising bioinks for 3D-printed cell scaffolds due to their biosafety, biocompatibility, and biodegradability. However, their widespread adoption has been hindered by inadequate formability and poor self-supporting properties. Here, we introduce an innovative starch-dominated hydrogel system achieved through dual methacrylation of normal corn starch and chitosan, enabling the fabrication of biodegradable cell scaffolds. While methacrylated starch alone (substitution degree: 0.013) exhibited insufficient printing accuracy even with UV assistance, the optimized 10:1 (starch/chitosan, <em>w</em>/w) blend of methacrylated chitosan (substitution degree: 0.27) demonstrated dramatically enhanced 3D printing formability and precision when combined with UV crosslinking. Rheological analysis demonstrated that blending methacrylated starch with methacrylated chitosan reduced flow stress (<em>τ</em><sub>f</sub>), improving printability while retaining shear-thinning behavior. Incorporation of 10 % glycerol enhanced biomacromolecular compatibility, as evidenced by rheological results and homogenous microstructures in SEM, enabling high-fidelity printing of intricate architectures. UV-cured scaffolds exhibited tunable compressive strength (150–200 kPa) and deformation rate (50–60 %), balancing mechanical compliance with tissue safety. The material's hydrophilic surface (contact angle: 30–60°) supported robust cell adhesion, while <em>in vitro</em> assays confirmed exceptional biocompatibility (96 % cell viability) and controlled biodegradation in α-amylase/lysozyme solutions. This work establishes starch as a primary matrix for bioinks, advancing sustainable, high-precision 3D printing in biomedicine.</div></div>\",\"PeriodicalId\":261,\"journal\":{\"name\":\"Carbohydrate Polymers\",\"volume\":\"367 \",\"pages\":\"Article 124023\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbohydrate Polymers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0144861725008070\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144861725008070","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Hybrid bioink of methyacrylated starch with minimal methacrylated chitosan enables high-precision 3D printing for complex tissue scaffolds
Starch-based gels represent promising bioinks for 3D-printed cell scaffolds due to their biosafety, biocompatibility, and biodegradability. However, their widespread adoption has been hindered by inadequate formability and poor self-supporting properties. Here, we introduce an innovative starch-dominated hydrogel system achieved through dual methacrylation of normal corn starch and chitosan, enabling the fabrication of biodegradable cell scaffolds. While methacrylated starch alone (substitution degree: 0.013) exhibited insufficient printing accuracy even with UV assistance, the optimized 10:1 (starch/chitosan, w/w) blend of methacrylated chitosan (substitution degree: 0.27) demonstrated dramatically enhanced 3D printing formability and precision when combined with UV crosslinking. Rheological analysis demonstrated that blending methacrylated starch with methacrylated chitosan reduced flow stress (τf), improving printability while retaining shear-thinning behavior. Incorporation of 10 % glycerol enhanced biomacromolecular compatibility, as evidenced by rheological results and homogenous microstructures in SEM, enabling high-fidelity printing of intricate architectures. UV-cured scaffolds exhibited tunable compressive strength (150–200 kPa) and deformation rate (50–60 %), balancing mechanical compliance with tissue safety. The material's hydrophilic surface (contact angle: 30–60°) supported robust cell adhesion, while in vitro assays confirmed exceptional biocompatibility (96 % cell viability) and controlled biodegradation in α-amylase/lysozyme solutions. This work establishes starch as a primary matrix for bioinks, advancing sustainable, high-precision 3D printing in biomedicine.
期刊介绍:
Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience.
The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.