Peter B. Gibson , Ashley M. Broadbent , Stephen J. Stuart , Hamish Lewis , Isaac Campbell , Neelesh Rampal , Luke J. Harrington , Jonny Williams
{"title":"缩小版CMIP6对新西兰未来气候的预估:气候学和极端事件","authors":"Peter B. Gibson , Ashley M. Broadbent , Stephen J. Stuart , Hamish Lewis , Isaac Campbell , Neelesh Rampal , Luke J. Harrington , Jonny Williams","doi":"10.1016/j.wace.2025.100784","DOIUrl":null,"url":null,"abstract":"<div><div>Downscaled climate projections provide regionally relevant information for climate adaptation and planning purposes. Updated climate projections (∼12-km) are presented here for the New Zealand region, downscaling 6 global climate models (GCMs) from the Coupled Model Intercomparison Project (CMIP6) under a high emissions scenario (SSP3-7.0). Three regional climate models (RCMs) are used to explore differences when downscaling select GCMs. For end of century projections (relative to 1986–2005), the national multi-model annual mean warming is 3.1°C (model range 2.0–3.8°C) across downscaled simulations. Downscaling generally enhances warming over New Zealand relative to the GCMs, with the largest increases across high-elevation regions. There can be important differences in the projections across RCMs, including at national scales for temperature and across local-to-regional scales for precipitation. Averaged across models, annual extreme heatwaves become 3–5°C hotter for most regions. More frequent, intense, and longer duration meteorological drought is projected across northern and eastern regions of both islands. In terms of model uncertainty based on sign agreement, while summer mean precipitation projections carry the largest uncertainty, projections of summer meteorological drought and precipitation extremes can be made with greater confidence. These results provide a foundation for further targeted regional climate change impact and adaptation studies.</div></div>","PeriodicalId":48630,"journal":{"name":"Weather and Climate Extremes","volume":"49 ","pages":"Article 100784"},"PeriodicalIF":6.9000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Downscaled CMIP6 future climate projections for New Zealand: climatology and extremes\",\"authors\":\"Peter B. Gibson , Ashley M. Broadbent , Stephen J. Stuart , Hamish Lewis , Isaac Campbell , Neelesh Rampal , Luke J. Harrington , Jonny Williams\",\"doi\":\"10.1016/j.wace.2025.100784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Downscaled climate projections provide regionally relevant information for climate adaptation and planning purposes. Updated climate projections (∼12-km) are presented here for the New Zealand region, downscaling 6 global climate models (GCMs) from the Coupled Model Intercomparison Project (CMIP6) under a high emissions scenario (SSP3-7.0). Three regional climate models (RCMs) are used to explore differences when downscaling select GCMs. For end of century projections (relative to 1986–2005), the national multi-model annual mean warming is 3.1°C (model range 2.0–3.8°C) across downscaled simulations. Downscaling generally enhances warming over New Zealand relative to the GCMs, with the largest increases across high-elevation regions. There can be important differences in the projections across RCMs, including at national scales for temperature and across local-to-regional scales for precipitation. Averaged across models, annual extreme heatwaves become 3–5°C hotter for most regions. More frequent, intense, and longer duration meteorological drought is projected across northern and eastern regions of both islands. In terms of model uncertainty based on sign agreement, while summer mean precipitation projections carry the largest uncertainty, projections of summer meteorological drought and precipitation extremes can be made with greater confidence. These results provide a foundation for further targeted regional climate change impact and adaptation studies.</div></div>\",\"PeriodicalId\":48630,\"journal\":{\"name\":\"Weather and Climate Extremes\",\"volume\":\"49 \",\"pages\":\"Article 100784\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Weather and Climate Extremes\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212094725000428\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Weather and Climate Extremes","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212094725000428","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Downscaled CMIP6 future climate projections for New Zealand: climatology and extremes
Downscaled climate projections provide regionally relevant information for climate adaptation and planning purposes. Updated climate projections (∼12-km) are presented here for the New Zealand region, downscaling 6 global climate models (GCMs) from the Coupled Model Intercomparison Project (CMIP6) under a high emissions scenario (SSP3-7.0). Three regional climate models (RCMs) are used to explore differences when downscaling select GCMs. For end of century projections (relative to 1986–2005), the national multi-model annual mean warming is 3.1°C (model range 2.0–3.8°C) across downscaled simulations. Downscaling generally enhances warming over New Zealand relative to the GCMs, with the largest increases across high-elevation regions. There can be important differences in the projections across RCMs, including at national scales for temperature and across local-to-regional scales for precipitation. Averaged across models, annual extreme heatwaves become 3–5°C hotter for most regions. More frequent, intense, and longer duration meteorological drought is projected across northern and eastern regions of both islands. In terms of model uncertainty based on sign agreement, while summer mean precipitation projections carry the largest uncertainty, projections of summer meteorological drought and precipitation extremes can be made with greater confidence. These results provide a foundation for further targeted regional climate change impact and adaptation studies.
期刊介绍:
Weather and Climate Extremes
Target Audience:
Academics
Decision makers
International development agencies
Non-governmental organizations (NGOs)
Civil society
Focus Areas:
Research in weather and climate extremes
Monitoring and early warning systems
Assessment of vulnerability and impacts
Developing and implementing intervention policies
Effective risk management and adaptation practices
Engagement of local communities in adopting coping strategies
Information and communication strategies tailored to local and regional needs and circumstances