Zeqian Feng , Mou Leong Tan , Mohd Amirul Mahamud , Joon Chuah , Fei Zhang
{"title":"太阳辐射变化对东南亚极端温度和热浪的影响","authors":"Zeqian Feng , Mou Leong Tan , Mohd Amirul Mahamud , Joon Chuah , Fei Zhang","doi":"10.1016/j.wace.2025.100789","DOIUrl":null,"url":null,"abstract":"<div><div>Solar Radiation Modification (SRM) has been proposed as a rapid solution to mitigate temperature rise, but its effects on regional temperature extremes and heatwaves remain underexplored. Southeast Asia, a region highly vulnerable to climate change due to its unique environmental and socio-economic conditions, necessitates detailed assessments of SRM impacts. This study evaluates the effects of SRM using two scenarios, G6Solar and G6Sulfur, alongside traditional emissions pathways (SSP245 and SSP585). Downscaled and bias-corrected GeoMIP6 datasets are analyzed for selected temperature and heatwave indices across 20 Southeast Asian sub-regions from 2020 to 2099. Under SSP585, annual maximum temperatures (TXx) by 2099 are projected to increase by 4–6 °C relative to the baseline, with heatwave characteristics intensifying substantially. Heatwave duration (HWD) could rise by 40–180 days, while occurrences (HWN) may increase 3–5 times, and intensity (HWA) could escalate by 5–6 °C. In contrast, SRM scenarios effectively moderate these impacts, aligning closer to the moderate SSP245 scenario. Between the two SRM approaches, G6Sulfur proves slightly more effective than G6Solar in reducing temperature extremes particularly in continental regions. Under SRM, heatwave frequency, duration, and intensity are less severe compared to SSP585, though spatial variability in effectiveness is observed and with minimal differences in mainland Southeast Asia. This study presents a comprehensive assessment of SRM's impacts on temperature extremes and heatwaves in Southeast Asia, utilizing a multi-model ensemble across multiple SRM and SSP scenarios. By focusing on a region often underrepresented in SRM research, this work offers critical insights for policymakers considering SRM as a climate mitigation strategy.</div></div>","PeriodicalId":48630,"journal":{"name":"Weather and Climate Extremes","volume":"49 ","pages":"Article 100789"},"PeriodicalIF":6.9000,"publicationDate":"2025-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impacts of solar radiation modification on temperature extremes and heatwaves in Southeast Asia\",\"authors\":\"Zeqian Feng , Mou Leong Tan , Mohd Amirul Mahamud , Joon Chuah , Fei Zhang\",\"doi\":\"10.1016/j.wace.2025.100789\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Solar Radiation Modification (SRM) has been proposed as a rapid solution to mitigate temperature rise, but its effects on regional temperature extremes and heatwaves remain underexplored. Southeast Asia, a region highly vulnerable to climate change due to its unique environmental and socio-economic conditions, necessitates detailed assessments of SRM impacts. This study evaluates the effects of SRM using two scenarios, G6Solar and G6Sulfur, alongside traditional emissions pathways (SSP245 and SSP585). Downscaled and bias-corrected GeoMIP6 datasets are analyzed for selected temperature and heatwave indices across 20 Southeast Asian sub-regions from 2020 to 2099. Under SSP585, annual maximum temperatures (TXx) by 2099 are projected to increase by 4–6 °C relative to the baseline, with heatwave characteristics intensifying substantially. Heatwave duration (HWD) could rise by 40–180 days, while occurrences (HWN) may increase 3–5 times, and intensity (HWA) could escalate by 5–6 °C. In contrast, SRM scenarios effectively moderate these impacts, aligning closer to the moderate SSP245 scenario. Between the two SRM approaches, G6Sulfur proves slightly more effective than G6Solar in reducing temperature extremes particularly in continental regions. Under SRM, heatwave frequency, duration, and intensity are less severe compared to SSP585, though spatial variability in effectiveness is observed and with minimal differences in mainland Southeast Asia. This study presents a comprehensive assessment of SRM's impacts on temperature extremes and heatwaves in Southeast Asia, utilizing a multi-model ensemble across multiple SRM and SSP scenarios. By focusing on a region often underrepresented in SRM research, this work offers critical insights for policymakers considering SRM as a climate mitigation strategy.</div></div>\",\"PeriodicalId\":48630,\"journal\":{\"name\":\"Weather and Climate Extremes\",\"volume\":\"49 \",\"pages\":\"Article 100789\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Weather and Climate Extremes\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212094725000477\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Weather and Climate Extremes","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212094725000477","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Impacts of solar radiation modification on temperature extremes and heatwaves in Southeast Asia
Solar Radiation Modification (SRM) has been proposed as a rapid solution to mitigate temperature rise, but its effects on regional temperature extremes and heatwaves remain underexplored. Southeast Asia, a region highly vulnerable to climate change due to its unique environmental and socio-economic conditions, necessitates detailed assessments of SRM impacts. This study evaluates the effects of SRM using two scenarios, G6Solar and G6Sulfur, alongside traditional emissions pathways (SSP245 and SSP585). Downscaled and bias-corrected GeoMIP6 datasets are analyzed for selected temperature and heatwave indices across 20 Southeast Asian sub-regions from 2020 to 2099. Under SSP585, annual maximum temperatures (TXx) by 2099 are projected to increase by 4–6 °C relative to the baseline, with heatwave characteristics intensifying substantially. Heatwave duration (HWD) could rise by 40–180 days, while occurrences (HWN) may increase 3–5 times, and intensity (HWA) could escalate by 5–6 °C. In contrast, SRM scenarios effectively moderate these impacts, aligning closer to the moderate SSP245 scenario. Between the two SRM approaches, G6Sulfur proves slightly more effective than G6Solar in reducing temperature extremes particularly in continental regions. Under SRM, heatwave frequency, duration, and intensity are less severe compared to SSP585, though spatial variability in effectiveness is observed and with minimal differences in mainland Southeast Asia. This study presents a comprehensive assessment of SRM's impacts on temperature extremes and heatwaves in Southeast Asia, utilizing a multi-model ensemble across multiple SRM and SSP scenarios. By focusing on a region often underrepresented in SRM research, this work offers critical insights for policymakers considering SRM as a climate mitigation strategy.
期刊介绍:
Weather and Climate Extremes
Target Audience:
Academics
Decision makers
International development agencies
Non-governmental organizations (NGOs)
Civil society
Focus Areas:
Research in weather and climate extremes
Monitoring and early warning systems
Assessment of vulnerability and impacts
Developing and implementing intervention policies
Effective risk management and adaptation practices
Engagement of local communities in adopting coping strategies
Information and communication strategies tailored to local and regional needs and circumstances