图的偏对偶格多项式

IF 0.9 3区 数学 Q1 MATHEMATICS
Zhiyun Cheng
{"title":"图的偏对偶格多项式","authors":"Zhiyun Cheng","doi":"10.1016/j.ejc.2025.104221","DOIUrl":null,"url":null,"abstract":"<div><div>Recently, Chmutov introduced the partial duality of ribbon graphs, which can be regarded as a generalization of the classical Euler-Poincaré duality. The partial-dual genus polynomial <span><math><mrow><msup><mrow></mrow><mrow><mi>∂</mi></mrow></msup><msub><mrow><mi>ɛ</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span> is an enumeration of the partial duals of <span><math><mi>G</mi></math></span> by Euler genus. For an intersection graph derived from a given chord diagram, the partial-dual genus polynomial can be defined by considering the ribbon graph associated to the chord diagram. In this paper, we provide a combinatorial approach to the partial-dual genus polynomial in terms of intersection graphs without referring to chord diagrams. After extending the definition of the partial-dual genus polynomial from intersection graphs to all graphs, we prove that it satisfies the four-term relation of graphs. This provides an answer to a problem proposed by Chmutov (2023).</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"130 ","pages":"Article 104221"},"PeriodicalIF":0.9000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Partial-dual genus polynomial of graphs\",\"authors\":\"Zhiyun Cheng\",\"doi\":\"10.1016/j.ejc.2025.104221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Recently, Chmutov introduced the partial duality of ribbon graphs, which can be regarded as a generalization of the classical Euler-Poincaré duality. The partial-dual genus polynomial <span><math><mrow><msup><mrow></mrow><mrow><mi>∂</mi></mrow></msup><msub><mrow><mi>ɛ</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span> is an enumeration of the partial duals of <span><math><mi>G</mi></math></span> by Euler genus. For an intersection graph derived from a given chord diagram, the partial-dual genus polynomial can be defined by considering the ribbon graph associated to the chord diagram. In this paper, we provide a combinatorial approach to the partial-dual genus polynomial in terms of intersection graphs without referring to chord diagrams. After extending the definition of the partial-dual genus polynomial from intersection graphs to all graphs, we prove that it satisfies the four-term relation of graphs. This provides an answer to a problem proposed by Chmutov (2023).</div></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":\"130 \",\"pages\":\"Article 104221\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195669825001106\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669825001106","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

最近,Chmutov引入了带状图的部分对偶性,它可以看作是经典欧拉-庞卡罗对偶性的推广。偏对偶格多项式∂o G(z)是G的偏对偶的欧拉格的枚举。对于由弦图导出的交点图,可以通过考虑与弦图相关联的带状图来定义部分对偶格多项式。在本文中,我们提供了一种不用弦图而用交图表示的部分对偶格多项式的组合方法。将部分对偶格多项式的定义从交图推广到所有图,证明了它满足图的四项关系。这为Chmutov(2023)提出的问题提供了答案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Partial-dual genus polynomial of graphs
Recently, Chmutov introduced the partial duality of ribbon graphs, which can be regarded as a generalization of the classical Euler-Poincaré duality. The partial-dual genus polynomial ɛG(z) is an enumeration of the partial duals of G by Euler genus. For an intersection graph derived from a given chord diagram, the partial-dual genus polynomial can be defined by considering the ribbon graph associated to the chord diagram. In this paper, we provide a combinatorial approach to the partial-dual genus polynomial in terms of intersection graphs without referring to chord diagrams. After extending the definition of the partial-dual genus polynomial from intersection graphs to all graphs, we prove that it satisfies the four-term relation of graphs. This provides an answer to a problem proposed by Chmutov (2023).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信