部分有序模式的形状-威尔夫等价的一个猜想的证明

IF 0.9 3区 数学 Q1 MATHEMATICS
Lintong Wang, Sherry H.F. Yan
{"title":"部分有序模式的形状-威尔夫等价的一个猜想的证明","authors":"Lintong Wang,&nbsp;Sherry H.F. Yan","doi":"10.1016/j.ejc.2025.104222","DOIUrl":null,"url":null,"abstract":"<div><div>A partially ordered pattern (abbreviated POP) is a partially ordered set (poset) that generalizes the notion of a pattern when we are not concerned with the relative order of some of its letters. The notion of partially ordered patterns provides a convenient language to deal with large sets of permutation patterns. In analogy to the shape-Wilf-equivalence for permutation patterns, Burstein–Han–Kitaev–Zhang initiated the study of the shape-Wilf-equivalence for POPs which would result in the shape-Wilf-equivalence for large sets of permutation patterns. The main objective of this paper is to confirm a recent intriguing conjecture posed by Burstein–Han–Kitaev–Zhang concerning the shape-Wilf-equivalence for POPs of length <span><math><mi>k</mi></math></span>. This is accomplished by establishing a bijection between two sets of pattern-avoiding transversals of a given Young diagram.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"130 ","pages":"Article 104222"},"PeriodicalIF":0.9000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proof of a conjecture on the shape-Wilf-equivalence for partially ordered patterns\",\"authors\":\"Lintong Wang,&nbsp;Sherry H.F. Yan\",\"doi\":\"10.1016/j.ejc.2025.104222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A partially ordered pattern (abbreviated POP) is a partially ordered set (poset) that generalizes the notion of a pattern when we are not concerned with the relative order of some of its letters. The notion of partially ordered patterns provides a convenient language to deal with large sets of permutation patterns. In analogy to the shape-Wilf-equivalence for permutation patterns, Burstein–Han–Kitaev–Zhang initiated the study of the shape-Wilf-equivalence for POPs which would result in the shape-Wilf-equivalence for large sets of permutation patterns. The main objective of this paper is to confirm a recent intriguing conjecture posed by Burstein–Han–Kitaev–Zhang concerning the shape-Wilf-equivalence for POPs of length <span><math><mi>k</mi></math></span>. This is accomplished by establishing a bijection between two sets of pattern-avoiding transversals of a given Young diagram.</div></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":\"130 \",\"pages\":\"Article 104222\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195669825001118\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669825001118","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

部分有序模式(简称POP)是一种部分有序集合(poset),当我们不关心其中一些字母的相对顺序时,它概括了模式的概念。部分有序模式的概念提供了一种方便的语言来处理大量排列模式集。与排列模式的形状-威尔夫等价类似,Burstein-Han-Kitaev-Zhang发起了持久性有机污染物的形状-威尔夫等价研究,这将导致大排列模式集的形状-威尔夫等价。本文的主要目的是证实最近由Burstein-Han-Kitaev-Zhang提出的关于长度为k的pop的形状- wilf等价的有趣猜想。这是通过在给定Young图的两组避模截线之间建立双射来完成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Proof of a conjecture on the shape-Wilf-equivalence for partially ordered patterns
A partially ordered pattern (abbreviated POP) is a partially ordered set (poset) that generalizes the notion of a pattern when we are not concerned with the relative order of some of its letters. The notion of partially ordered patterns provides a convenient language to deal with large sets of permutation patterns. In analogy to the shape-Wilf-equivalence for permutation patterns, Burstein–Han–Kitaev–Zhang initiated the study of the shape-Wilf-equivalence for POPs which would result in the shape-Wilf-equivalence for large sets of permutation patterns. The main objective of this paper is to confirm a recent intriguing conjecture posed by Burstein–Han–Kitaev–Zhang concerning the shape-Wilf-equivalence for POPs of length k. This is accomplished by establishing a bijection between two sets of pattern-avoiding transversals of a given Young diagram.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信