{"title":"部分有序模式的形状-威尔夫等价的一个猜想的证明","authors":"Lintong Wang, Sherry H.F. Yan","doi":"10.1016/j.ejc.2025.104222","DOIUrl":null,"url":null,"abstract":"<div><div>A partially ordered pattern (abbreviated POP) is a partially ordered set (poset) that generalizes the notion of a pattern when we are not concerned with the relative order of some of its letters. The notion of partially ordered patterns provides a convenient language to deal with large sets of permutation patterns. In analogy to the shape-Wilf-equivalence for permutation patterns, Burstein–Han–Kitaev–Zhang initiated the study of the shape-Wilf-equivalence for POPs which would result in the shape-Wilf-equivalence for large sets of permutation patterns. The main objective of this paper is to confirm a recent intriguing conjecture posed by Burstein–Han–Kitaev–Zhang concerning the shape-Wilf-equivalence for POPs of length <span><math><mi>k</mi></math></span>. This is accomplished by establishing a bijection between two sets of pattern-avoiding transversals of a given Young diagram.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"130 ","pages":"Article 104222"},"PeriodicalIF":0.9000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proof of a conjecture on the shape-Wilf-equivalence for partially ordered patterns\",\"authors\":\"Lintong Wang, Sherry H.F. Yan\",\"doi\":\"10.1016/j.ejc.2025.104222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A partially ordered pattern (abbreviated POP) is a partially ordered set (poset) that generalizes the notion of a pattern when we are not concerned with the relative order of some of its letters. The notion of partially ordered patterns provides a convenient language to deal with large sets of permutation patterns. In analogy to the shape-Wilf-equivalence for permutation patterns, Burstein–Han–Kitaev–Zhang initiated the study of the shape-Wilf-equivalence for POPs which would result in the shape-Wilf-equivalence for large sets of permutation patterns. The main objective of this paper is to confirm a recent intriguing conjecture posed by Burstein–Han–Kitaev–Zhang concerning the shape-Wilf-equivalence for POPs of length <span><math><mi>k</mi></math></span>. This is accomplished by establishing a bijection between two sets of pattern-avoiding transversals of a given Young diagram.</div></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":\"130 \",\"pages\":\"Article 104222\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195669825001118\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669825001118","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Proof of a conjecture on the shape-Wilf-equivalence for partially ordered patterns
A partially ordered pattern (abbreviated POP) is a partially ordered set (poset) that generalizes the notion of a pattern when we are not concerned with the relative order of some of its letters. The notion of partially ordered patterns provides a convenient language to deal with large sets of permutation patterns. In analogy to the shape-Wilf-equivalence for permutation patterns, Burstein–Han–Kitaev–Zhang initiated the study of the shape-Wilf-equivalence for POPs which would result in the shape-Wilf-equivalence for large sets of permutation patterns. The main objective of this paper is to confirm a recent intriguing conjecture posed by Burstein–Han–Kitaev–Zhang concerning the shape-Wilf-equivalence for POPs of length . This is accomplished by establishing a bijection between two sets of pattern-avoiding transversals of a given Young diagram.
期刊介绍:
The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.