粒子群优化的集体动力学:一个网络科学的视角

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Lingyun Deng, Sanyang Liu
{"title":"粒子群优化的集体动力学:一个网络科学的视角","authors":"Lingyun Deng,&nbsp;Sanyang Liu","doi":"10.1016/j.physa.2025.130778","DOIUrl":null,"url":null,"abstract":"<div><div>Particle swarm optimization (PSO) is a cornerstone of evolutionary computation, yet its population dynamics and topological properties remain poorly understood beyond traditional stability analysis. This study presents the first network science-based investigation of PSO’s intrinsic topology, demonstrating that its network structure inherently exhibits small-world architecture and heavy-tailed degree distributions. Through systematic analysis of 13 benchmark functions – including 7 unimodal and 6 multimodal problems – we construct population communication networks where nodes represent particles and edges denote the interaction between individuals. This interdisciplinary lens provides a promising theoretical framework for analyzing evolutionary computation methods.</div></div>","PeriodicalId":20152,"journal":{"name":"Physica A: Statistical Mechanics and its Applications","volume":"675 ","pages":"Article 130778"},"PeriodicalIF":2.8000,"publicationDate":"2025-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Collective dynamics of particle swarm optimization: A network science perspective\",\"authors\":\"Lingyun Deng,&nbsp;Sanyang Liu\",\"doi\":\"10.1016/j.physa.2025.130778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Particle swarm optimization (PSO) is a cornerstone of evolutionary computation, yet its population dynamics and topological properties remain poorly understood beyond traditional stability analysis. This study presents the first network science-based investigation of PSO’s intrinsic topology, demonstrating that its network structure inherently exhibits small-world architecture and heavy-tailed degree distributions. Through systematic analysis of 13 benchmark functions – including 7 unimodal and 6 multimodal problems – we construct population communication networks where nodes represent particles and edges denote the interaction between individuals. This interdisciplinary lens provides a promising theoretical framework for analyzing evolutionary computation methods.</div></div>\",\"PeriodicalId\":20152,\"journal\":{\"name\":\"Physica A: Statistical Mechanics and its Applications\",\"volume\":\"675 \",\"pages\":\"Article 130778\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica A: Statistical Mechanics and its Applications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378437125004303\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica A: Statistical Mechanics and its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378437125004303","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

粒子群优化(PSO)是进化计算的基础,但除了传统的稳定性分析之外,对其种群动态和拓扑特性的理解仍然很少。本研究首次基于网络科学对粒子群的内在拓扑结构进行了研究,表明其网络结构固有地表现为小世界结构和重尾度分布。通过对13个基准函数(包括7个单峰和6个多峰问题)的系统分析,我们构建了种群通信网络,其中节点表示粒子,边缘表示个体之间的相互作用。这种跨学科的视角为分析进化计算方法提供了一个有前途的理论框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Collective dynamics of particle swarm optimization: A network science perspective
Particle swarm optimization (PSO) is a cornerstone of evolutionary computation, yet its population dynamics and topological properties remain poorly understood beyond traditional stability analysis. This study presents the first network science-based investigation of PSO’s intrinsic topology, demonstrating that its network structure inherently exhibits small-world architecture and heavy-tailed degree distributions. Through systematic analysis of 13 benchmark functions – including 7 unimodal and 6 multimodal problems – we construct population communication networks where nodes represent particles and edges denote the interaction between individuals. This interdisciplinary lens provides a promising theoretical framework for analyzing evolutionary computation methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
9.10%
发文量
852
审稿时长
6.6 months
期刊介绍: Physica A: Statistical Mechanics and its Applications Recognized by the European Physical Society Physica A publishes research in the field of statistical mechanics and its applications. Statistical mechanics sets out to explain the behaviour of macroscopic systems by studying the statistical properties of their microscopic constituents. Applications of the techniques of statistical mechanics are widespread, and include: applications to physical systems such as solids, liquids and gases; applications to chemical and biological systems (colloids, interfaces, complex fluids, polymers and biopolymers, cell physics); and other interdisciplinary applications to for instance biological, economical and sociological systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信