Zhenglong Li , Xingyu Ding , Da Liu , Jin Zhou , Yong Gao , Yanxia Liu , Lin Jiang , Renbing Wu , Hongge Pan
{"title":"原位x射线吸收光谱在析氢反应:见解和应用","authors":"Zhenglong Li , Xingyu Ding , Da Liu , Jin Zhou , Yong Gao , Yanxia Liu , Lin Jiang , Renbing Wu , Hongge Pan","doi":"10.1016/j.mser.2025.101061","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrogen evolution reaction (HER) as a footstone of hydrogen economy offers a sustainable approach to achieve energy conversion and storage efficiency from intermittent power like solar and wind. Understanding the genuine active sites and the correlation between dynamic structure and activity in HER electrocatalysts is crucial for their rational design and performance optimization. In-situ X-ray absorption spectroscopy (XAS) has emerged as an effective technique to reveal the behavior of the electrocatalyst in real-time. This review offers an extensive overview of the application of in-situ XAS in studying HER electrocatalysts, highlighting its capacity to investigate the electronic and geometric structures of electrocatalysts during HER operation. It begins with fundamentals of HER mechanism and XAS principles, with an emphasis on the experimental setup of in-situ XAS. Thereafter, identifying active sites and investigating structural dynamics for various electrocatalysts during HER process are emphasized. Finally, this review summarizes the challenges and directions for the advancement of in-situ XAS techniques for HER catalysis.</div></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"166 ","pages":"Article 101061"},"PeriodicalIF":31.6000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-situ X-ray absorption spectroscopy in hydrogen evolution reaction: Insights and applications\",\"authors\":\"Zhenglong Li , Xingyu Ding , Da Liu , Jin Zhou , Yong Gao , Yanxia Liu , Lin Jiang , Renbing Wu , Hongge Pan\",\"doi\":\"10.1016/j.mser.2025.101061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hydrogen evolution reaction (HER) as a footstone of hydrogen economy offers a sustainable approach to achieve energy conversion and storage efficiency from intermittent power like solar and wind. Understanding the genuine active sites and the correlation between dynamic structure and activity in HER electrocatalysts is crucial for their rational design and performance optimization. In-situ X-ray absorption spectroscopy (XAS) has emerged as an effective technique to reveal the behavior of the electrocatalyst in real-time. This review offers an extensive overview of the application of in-situ XAS in studying HER electrocatalysts, highlighting its capacity to investigate the electronic and geometric structures of electrocatalysts during HER operation. It begins with fundamentals of HER mechanism and XAS principles, with an emphasis on the experimental setup of in-situ XAS. Thereafter, identifying active sites and investigating structural dynamics for various electrocatalysts during HER process are emphasized. Finally, this review summarizes the challenges and directions for the advancement of in-situ XAS techniques for HER catalysis.</div></div>\",\"PeriodicalId\":386,\"journal\":{\"name\":\"Materials Science and Engineering: R: Reports\",\"volume\":\"166 \",\"pages\":\"Article 101061\"},\"PeriodicalIF\":31.6000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science and Engineering: R: Reports\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927796X2500138X\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: R: Reports","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927796X2500138X","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
In-situ X-ray absorption spectroscopy in hydrogen evolution reaction: Insights and applications
Hydrogen evolution reaction (HER) as a footstone of hydrogen economy offers a sustainable approach to achieve energy conversion and storage efficiency from intermittent power like solar and wind. Understanding the genuine active sites and the correlation between dynamic structure and activity in HER electrocatalysts is crucial for their rational design and performance optimization. In-situ X-ray absorption spectroscopy (XAS) has emerged as an effective technique to reveal the behavior of the electrocatalyst in real-time. This review offers an extensive overview of the application of in-situ XAS in studying HER electrocatalysts, highlighting its capacity to investigate the electronic and geometric structures of electrocatalysts during HER operation. It begins with fundamentals of HER mechanism and XAS principles, with an emphasis on the experimental setup of in-situ XAS. Thereafter, identifying active sites and investigating structural dynamics for various electrocatalysts during HER process are emphasized. Finally, this review summarizes the challenges and directions for the advancement of in-situ XAS techniques for HER catalysis.
期刊介绍:
Materials Science & Engineering R: Reports is a journal that covers a wide range of topics in the field of materials science and engineering. It publishes both experimental and theoretical research papers, providing background information and critical assessments on various topics. The journal aims to publish high-quality and novel research papers and reviews.
The subject areas covered by the journal include Materials Science (General), Electronic Materials, Optical Materials, and Magnetic Materials. In addition to regular issues, the journal also publishes special issues on key themes in the field of materials science, including Energy Materials, Materials for Health, Materials Discovery, Innovation for High Value Manufacturing, and Sustainable Materials development.