Yuanchao Yu , Albert Griera , Enrique Gomez-Rivas , Paul D. Bons , Daniel Garcia-Castellanos , Baoqin Hao , Ricardo A. Lebensohn , Cassandra Seltzer , Maria-Gema Llorens
{"title":"动态再结晶橄榄石在复杂变形条件下的微观结构和CPO演化:一种全场数值模拟方法","authors":"Yuanchao Yu , Albert Griera , Enrique Gomez-Rivas , Paul D. Bons , Daniel Garcia-Castellanos , Baoqin Hao , Ricardo A. Lebensohn , Cassandra Seltzer , Maria-Gema Llorens","doi":"10.1016/j.jsg.2025.105500","DOIUrl":null,"url":null,"abstract":"<div><div>The rheological properties of mantle rocks are strongly dependent on their crystallographic preferred orientation (CPO). Olivine CPO, defined by the orientation of seismically fast [100] axes parallel to flow direction, is also thought to be a dominant contributor to seismic anisotropy in the Earth's upper mantle. However, the amount of deformation needed to overprint a new CPO on a pre-existing fabric and the impact of the inherited CPOs on the transient microstructure evolution, remain unknown. This study employs a full-field numerical approach (VPFFT-ELLE) to explore the dynamic recrystallization and microstructural evolution of olivine polycrystalline aggregates under complex deformation conditions. We test four combinations of successive pure shear and simple shear boundary conditions. Findings indicate that inherited CPOs influence subsequent deformation in a manner dependent on the kinematic relationship between successive stages. In all cases, a minor strain increment (ε ∼0.3–0.6) is sufficient to erase the previous microstructure and CPO. However, when deformation conditions change dramatically (<em>e.g.</em>, stretching direction changes orthogonally), the intensity of the new CPO developed is significantly lower and strain distribution are specially altered. During a transient strain stage, pre-existing microstructures undergo extensive reworking, especially when deformation conditions are changed dramatically, such as switching from simple shear to a pure shear condition with a parallel shortening direction relative to the stretching direction. We estimate the significance of these results in interpreting observations of seismic velocity anisotropy, concluding that P-wave seismic anisotropy is significantly and positively correlated with the evolution of olivine CPO with deformation history. This research underscores the transient nature of microstructural rearrangement in olivine aggregates and the necessity for caution in interpreting seismic anisotropy in regions with complex deformation histories, as inherited CPOs can influence current fabric development and induce deviation to the present deformation conditions.</div></div>","PeriodicalId":50035,"journal":{"name":"Journal of Structural Geology","volume":"199 ","pages":"Article 105500"},"PeriodicalIF":2.6000,"publicationDate":"2025-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microstructure and CPO evolution of dynamically recrystallized olivine during complex deformation conditions: a full-field numerical modeling approach\",\"authors\":\"Yuanchao Yu , Albert Griera , Enrique Gomez-Rivas , Paul D. Bons , Daniel Garcia-Castellanos , Baoqin Hao , Ricardo A. Lebensohn , Cassandra Seltzer , Maria-Gema Llorens\",\"doi\":\"10.1016/j.jsg.2025.105500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The rheological properties of mantle rocks are strongly dependent on their crystallographic preferred orientation (CPO). Olivine CPO, defined by the orientation of seismically fast [100] axes parallel to flow direction, is also thought to be a dominant contributor to seismic anisotropy in the Earth's upper mantle. However, the amount of deformation needed to overprint a new CPO on a pre-existing fabric and the impact of the inherited CPOs on the transient microstructure evolution, remain unknown. This study employs a full-field numerical approach (VPFFT-ELLE) to explore the dynamic recrystallization and microstructural evolution of olivine polycrystalline aggregates under complex deformation conditions. We test four combinations of successive pure shear and simple shear boundary conditions. Findings indicate that inherited CPOs influence subsequent deformation in a manner dependent on the kinematic relationship between successive stages. In all cases, a minor strain increment (ε ∼0.3–0.6) is sufficient to erase the previous microstructure and CPO. However, when deformation conditions change dramatically (<em>e.g.</em>, stretching direction changes orthogonally), the intensity of the new CPO developed is significantly lower and strain distribution are specially altered. During a transient strain stage, pre-existing microstructures undergo extensive reworking, especially when deformation conditions are changed dramatically, such as switching from simple shear to a pure shear condition with a parallel shortening direction relative to the stretching direction. We estimate the significance of these results in interpreting observations of seismic velocity anisotropy, concluding that P-wave seismic anisotropy is significantly and positively correlated with the evolution of olivine CPO with deformation history. This research underscores the transient nature of microstructural rearrangement in olivine aggregates and the necessity for caution in interpreting seismic anisotropy in regions with complex deformation histories, as inherited CPOs can influence current fabric development and induce deviation to the present deformation conditions.</div></div>\",\"PeriodicalId\":50035,\"journal\":{\"name\":\"Journal of Structural Geology\",\"volume\":\"199 \",\"pages\":\"Article 105500\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Structural Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0191814125001750\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Structural Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0191814125001750","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Microstructure and CPO evolution of dynamically recrystallized olivine during complex deformation conditions: a full-field numerical modeling approach
The rheological properties of mantle rocks are strongly dependent on their crystallographic preferred orientation (CPO). Olivine CPO, defined by the orientation of seismically fast [100] axes parallel to flow direction, is also thought to be a dominant contributor to seismic anisotropy in the Earth's upper mantle. However, the amount of deformation needed to overprint a new CPO on a pre-existing fabric and the impact of the inherited CPOs on the transient microstructure evolution, remain unknown. This study employs a full-field numerical approach (VPFFT-ELLE) to explore the dynamic recrystallization and microstructural evolution of olivine polycrystalline aggregates under complex deformation conditions. We test four combinations of successive pure shear and simple shear boundary conditions. Findings indicate that inherited CPOs influence subsequent deformation in a manner dependent on the kinematic relationship between successive stages. In all cases, a minor strain increment (ε ∼0.3–0.6) is sufficient to erase the previous microstructure and CPO. However, when deformation conditions change dramatically (e.g., stretching direction changes orthogonally), the intensity of the new CPO developed is significantly lower and strain distribution are specially altered. During a transient strain stage, pre-existing microstructures undergo extensive reworking, especially when deformation conditions are changed dramatically, such as switching from simple shear to a pure shear condition with a parallel shortening direction relative to the stretching direction. We estimate the significance of these results in interpreting observations of seismic velocity anisotropy, concluding that P-wave seismic anisotropy is significantly and positively correlated with the evolution of olivine CPO with deformation history. This research underscores the transient nature of microstructural rearrangement in olivine aggregates and the necessity for caution in interpreting seismic anisotropy in regions with complex deformation histories, as inherited CPOs can influence current fabric development and induce deviation to the present deformation conditions.
期刊介绍:
The Journal of Structural Geology publishes process-oriented investigations about structural geology using appropriate combinations of analog and digital field data, seismic reflection data, satellite-derived data, geometric analysis, kinematic analysis, laboratory experiments, computer visualizations, and analogue or numerical modelling on all scales. Contributions are encouraged to draw perspectives from rheology, rock mechanics, geophysics,metamorphism, sedimentology, petroleum geology, economic geology, geodynamics, planetary geology, tectonics and neotectonics to provide a more powerful understanding of deformation processes and systems. Given the visual nature of the discipline, supplementary materials that portray the data and analysis in 3-D or quasi 3-D manners, including the use of videos, and/or graphical abstracts can significantly strengthen the impact of contributions.