Sheng Hao , Junwei Gao , Jianqun Cui , Yinyi Chen , Xiying Fan , Zhen Li
{"title":"基于分子扩散理论的能量平衡负载感知路由算法用于能量收集辅助WSN","authors":"Sheng Hao , Junwei Gao , Jianqun Cui , Yinyi Chen , Xiying Fan , Zhen Li","doi":"10.1016/j.iot.2025.101691","DOIUrl":null,"url":null,"abstract":"<div><div>Energy Harvesting-Wireless Sensor Networks (EH-WSNs) play a crucial role in the development of Green Internet of Things (GIoT). While the energy-harvesting process alleviates the constraints of energy supply in WSNs, most current routing protocols for EH-WSNs inadequately account for the heterogeneity in energy states and traffic loads among sensor nodes, which may impair the energy efficiency and transmission performance of networks. To address the above issues, we utilize molecular diffusion theory to design an energy-balanced and load-aware routing algorithm (EBLARA-MD for short) for EH-WSNs. Initially, we construct a dual EH prediction model based on the clustering Markov chain (MC) method, to accurately forecast the amount of solar and wind power generation. Subsequently, an energy-rank model is established to assess the energy levels of nodes. Building on this, we propose a cross-layer adjustment scheme to avoid energy depletion and wastage. Namely, at the Media Access Control (MAC) layer, the backoff time is optimized dynamically to affect the channel access probability of each node; at the physical layer, the transmission power is determined adaptively by considering the wireless fading property. In addition, we construct a load-aware model to reflect the congestion degree of data buffer. Finally, we leverage molecular diffusion theory to allocate the routing probabilities for suitable paths. Simulation results demonstrate that the proposed routing algorithm achieves superior performance in terms of energy efficiency, end-to-end delay variance, and packet delivery ratio.</div></div>","PeriodicalId":29968,"journal":{"name":"Internet of Things","volume":"33 ","pages":"Article 101691"},"PeriodicalIF":6.0000,"publicationDate":"2025-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An energy-balanced and load-aware routing algorithm based on molecular diffusion theory for energy harvesting assisted WSN\",\"authors\":\"Sheng Hao , Junwei Gao , Jianqun Cui , Yinyi Chen , Xiying Fan , Zhen Li\",\"doi\":\"10.1016/j.iot.2025.101691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Energy Harvesting-Wireless Sensor Networks (EH-WSNs) play a crucial role in the development of Green Internet of Things (GIoT). While the energy-harvesting process alleviates the constraints of energy supply in WSNs, most current routing protocols for EH-WSNs inadequately account for the heterogeneity in energy states and traffic loads among sensor nodes, which may impair the energy efficiency and transmission performance of networks. To address the above issues, we utilize molecular diffusion theory to design an energy-balanced and load-aware routing algorithm (EBLARA-MD for short) for EH-WSNs. Initially, we construct a dual EH prediction model based on the clustering Markov chain (MC) method, to accurately forecast the amount of solar and wind power generation. Subsequently, an energy-rank model is established to assess the energy levels of nodes. Building on this, we propose a cross-layer adjustment scheme to avoid energy depletion and wastage. Namely, at the Media Access Control (MAC) layer, the backoff time is optimized dynamically to affect the channel access probability of each node; at the physical layer, the transmission power is determined adaptively by considering the wireless fading property. In addition, we construct a load-aware model to reflect the congestion degree of data buffer. Finally, we leverage molecular diffusion theory to allocate the routing probabilities for suitable paths. Simulation results demonstrate that the proposed routing algorithm achieves superior performance in terms of energy efficiency, end-to-end delay variance, and packet delivery ratio.</div></div>\",\"PeriodicalId\":29968,\"journal\":{\"name\":\"Internet of Things\",\"volume\":\"33 \",\"pages\":\"Article 101691\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Internet of Things\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542660525002057\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet of Things","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542660525002057","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
An energy-balanced and load-aware routing algorithm based on molecular diffusion theory for energy harvesting assisted WSN
Energy Harvesting-Wireless Sensor Networks (EH-WSNs) play a crucial role in the development of Green Internet of Things (GIoT). While the energy-harvesting process alleviates the constraints of energy supply in WSNs, most current routing protocols for EH-WSNs inadequately account for the heterogeneity in energy states and traffic loads among sensor nodes, which may impair the energy efficiency and transmission performance of networks. To address the above issues, we utilize molecular diffusion theory to design an energy-balanced and load-aware routing algorithm (EBLARA-MD for short) for EH-WSNs. Initially, we construct a dual EH prediction model based on the clustering Markov chain (MC) method, to accurately forecast the amount of solar and wind power generation. Subsequently, an energy-rank model is established to assess the energy levels of nodes. Building on this, we propose a cross-layer adjustment scheme to avoid energy depletion and wastage. Namely, at the Media Access Control (MAC) layer, the backoff time is optimized dynamically to affect the channel access probability of each node; at the physical layer, the transmission power is determined adaptively by considering the wireless fading property. In addition, we construct a load-aware model to reflect the congestion degree of data buffer. Finally, we leverage molecular diffusion theory to allocate the routing probabilities for suitable paths. Simulation results demonstrate that the proposed routing algorithm achieves superior performance in terms of energy efficiency, end-to-end delay variance, and packet delivery ratio.
期刊介绍:
Internet of Things; Engineering Cyber Physical Human Systems is a comprehensive journal encouraging cross collaboration between researchers, engineers and practitioners in the field of IoT & Cyber Physical Human Systems. The journal offers a unique platform to exchange scientific information on the entire breadth of technology, science, and societal applications of the IoT.
The journal will place a high priority on timely publication, and provide a home for high quality.
Furthermore, IOT is interested in publishing topical Special Issues on any aspect of IOT.