Arshak A Tsaturyan,Ginevra Giobbio,Matteo Bonomo,Andrea Fin,Nadia Barbero,Raffaele Borrelli,Claudia Barolo
{"title":"取代钴联吡啶配合物的光化学和电化学性质的理论分析:染料敏化太阳能电池氧化还原介质的案例研究。","authors":"Arshak A Tsaturyan,Ginevra Giobbio,Matteo Bonomo,Andrea Fin,Nadia Barbero,Raffaele Borrelli,Claudia Barolo","doi":"10.1021/acs.inorgchem.5c01156","DOIUrl":null,"url":null,"abstract":"This study presents a comprehensive theoretical investigation into the photophysical and electrochemical properties of substituted cobalt bipyridine complexes, evaluated as potential redox mediators in dye-sensitized solar cells. Utilizing a variety of computational methods, including density functional theory and multireference electron correlation techniques, we examine the influence of various substituents on the electronic structure and stability of cobalt complexes. Our findings reveal that strong electron-withdrawing groups enhance the formal redox potential, while electron-donating groups decrease it, illustrating the delicate balance between electronic effects on the complex stability. The simulated properties were compared with the available experimental measurements, demonstrating good correlation and validating the computational approaches used. Analysis of the spin states indicates that cobalt(II) complexes predominantly exist in a high-spin state with low-spin configurations favored in cobalt(III). The reorganization energy for these complexes was calculated, highlighting the role of the inner and outer-shell contributions in determining electron transfer kinetics.","PeriodicalId":40,"journal":{"name":"Inorganic Chemistry","volume":"4 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical Analysis of Photochemical and Electrochemical Properties of Substituted Cobalt Bipyridine Complexes: Redox Mediators in Dye-Sensitized Solar Cells as a Case Study.\",\"authors\":\"Arshak A Tsaturyan,Ginevra Giobbio,Matteo Bonomo,Andrea Fin,Nadia Barbero,Raffaele Borrelli,Claudia Barolo\",\"doi\":\"10.1021/acs.inorgchem.5c01156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents a comprehensive theoretical investigation into the photophysical and electrochemical properties of substituted cobalt bipyridine complexes, evaluated as potential redox mediators in dye-sensitized solar cells. Utilizing a variety of computational methods, including density functional theory and multireference electron correlation techniques, we examine the influence of various substituents on the electronic structure and stability of cobalt complexes. Our findings reveal that strong electron-withdrawing groups enhance the formal redox potential, while electron-donating groups decrease it, illustrating the delicate balance between electronic effects on the complex stability. The simulated properties were compared with the available experimental measurements, demonstrating good correlation and validating the computational approaches used. Analysis of the spin states indicates that cobalt(II) complexes predominantly exist in a high-spin state with low-spin configurations favored in cobalt(III). The reorganization energy for these complexes was calculated, highlighting the role of the inner and outer-shell contributions in determining electron transfer kinetics.\",\"PeriodicalId\":40,\"journal\":{\"name\":\"Inorganic Chemistry\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.inorgchem.5c01156\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.inorgchem.5c01156","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Theoretical Analysis of Photochemical and Electrochemical Properties of Substituted Cobalt Bipyridine Complexes: Redox Mediators in Dye-Sensitized Solar Cells as a Case Study.
This study presents a comprehensive theoretical investigation into the photophysical and electrochemical properties of substituted cobalt bipyridine complexes, evaluated as potential redox mediators in dye-sensitized solar cells. Utilizing a variety of computational methods, including density functional theory and multireference electron correlation techniques, we examine the influence of various substituents on the electronic structure and stability of cobalt complexes. Our findings reveal that strong electron-withdrawing groups enhance the formal redox potential, while electron-donating groups decrease it, illustrating the delicate balance between electronic effects on the complex stability. The simulated properties were compared with the available experimental measurements, demonstrating good correlation and validating the computational approaches used. Analysis of the spin states indicates that cobalt(II) complexes predominantly exist in a high-spin state with low-spin configurations favored in cobalt(III). The reorganization energy for these complexes was calculated, highlighting the role of the inner and outer-shell contributions in determining electron transfer kinetics.
期刊介绍:
Inorganic Chemistry publishes fundamental studies in all phases of inorganic chemistry. Coverage includes experimental and theoretical reports on quantitative studies of structure and thermodynamics, kinetics, mechanisms of inorganic reactions, bioinorganic chemistry, and relevant aspects of organometallic chemistry, solid-state phenomena, and chemical bonding theory. Emphasis is placed on the synthesis, structure, thermodynamics, reactivity, spectroscopy, and bonding properties of significant new and known compounds.