通过纳米传感器化学细胞术揭示人类真皮成纤维细胞的衰老异质性

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Youngho Song, Inwoo Seo, Changyu Tian, Jiseon An, Seongcheol Park, Jiyu Hyun, Seunghyuk Jung, Hyun Su Park, Hyun-Ji Park, Suk Ho Bhang, Soo-Yeon Cho
{"title":"通过纳米传感器化学细胞术揭示人类真皮成纤维细胞的衰老异质性","authors":"Youngho Song, Inwoo Seo, Changyu Tian, Jiseon An, Seongcheol Park, Jiyu Hyun, Seunghyuk Jung, Hyun Su Park, Hyun-Ji Park, Suk Ho Bhang, Soo-Yeon Cho","doi":"10.1038/s41467-025-61590-8","DOIUrl":null,"url":null,"abstract":"<p>Aging heterogeneity in tissue-regenerative cells leads to variable therapeutic outcomes, complicating quality control and clinical predictability. Conventional analytical methods relying on labeling or cell lysis are destructive and incompatible with downstream therapeutic applications. Here we show a label-free, nondestructive single-cell analysis platform based on nanosensor chemical cytometry (NCC), integrated with automated hardware and deep learning. nIR fluorescent single-walled carbon nanotube arrays in a microfluidic channel, together with photonic nanojet lensing, extract four key aging phenotypes (cell size, shape, refractive index, and H<sub>2</sub>O<sub>2</sub> efflux) from flowing cells in a high-throughput manner. Approximately 10<sup>5</sup> cells are quantified within 1 h, and NCC phenotype data were used to construct virtual aging trajectories in 3D space. The resulting phenotypic heterogeneity aligns with RNA-sequencing gene-expression profiles, enabling reliable prediction of therapeutic efficacy. The platform rapidly identifies optimally aged cells without perturbation, providing a robust tool for real-time monitoring and quality control in regenerative-cell manufacturing.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"21 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling aging heterogeneities in human dermal fibroblasts via nanosensor chemical cytometry\",\"authors\":\"Youngho Song, Inwoo Seo, Changyu Tian, Jiseon An, Seongcheol Park, Jiyu Hyun, Seunghyuk Jung, Hyun Su Park, Hyun-Ji Park, Suk Ho Bhang, Soo-Yeon Cho\",\"doi\":\"10.1038/s41467-025-61590-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Aging heterogeneity in tissue-regenerative cells leads to variable therapeutic outcomes, complicating quality control and clinical predictability. Conventional analytical methods relying on labeling or cell lysis are destructive and incompatible with downstream therapeutic applications. Here we show a label-free, nondestructive single-cell analysis platform based on nanosensor chemical cytometry (NCC), integrated with automated hardware and deep learning. nIR fluorescent single-walled carbon nanotube arrays in a microfluidic channel, together with photonic nanojet lensing, extract four key aging phenotypes (cell size, shape, refractive index, and H<sub>2</sub>O<sub>2</sub> efflux) from flowing cells in a high-throughput manner. Approximately 10<sup>5</sup> cells are quantified within 1 h, and NCC phenotype data were used to construct virtual aging trajectories in 3D space. The resulting phenotypic heterogeneity aligns with RNA-sequencing gene-expression profiles, enabling reliable prediction of therapeutic efficacy. The platform rapidly identifies optimally aged cells without perturbation, providing a robust tool for real-time monitoring and quality control in regenerative-cell manufacturing.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-61590-8\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61590-8","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

组织再生细胞的衰老异质性导致不同的治疗结果,使质量控制和临床可预测性复杂化。传统的分析方法依赖于标记或细胞裂解是破坏性的,与下游治疗应用不相容。在这里,我们展示了一个基于纳米传感器化学细胞术(NCC)的无标签、非破坏性单细胞分析平台,集成了自动化硬件和深度学习。微流控通道中的近红外荧光单壁碳纳米管阵列与光子纳米射流透镜一起,以高通量的方式从流动细胞中提取四种关键的老化表型(细胞大小、形状、折射率和H2O2外排)。大约105个细胞在1小时内被量化,并使用NCC表型数据在三维空间中构建虚拟衰老轨迹。由此产生的表型异质性与rna测序基因表达谱一致,能够可靠地预测治疗效果。该平台快速识别无扰动的最佳老化细胞,为再生细胞制造中的实时监测和质量控制提供了强大的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Unveiling aging heterogeneities in human dermal fibroblasts via nanosensor chemical cytometry

Unveiling aging heterogeneities in human dermal fibroblasts via nanosensor chemical cytometry

Aging heterogeneity in tissue-regenerative cells leads to variable therapeutic outcomes, complicating quality control and clinical predictability. Conventional analytical methods relying on labeling or cell lysis are destructive and incompatible with downstream therapeutic applications. Here we show a label-free, nondestructive single-cell analysis platform based on nanosensor chemical cytometry (NCC), integrated with automated hardware and deep learning. nIR fluorescent single-walled carbon nanotube arrays in a microfluidic channel, together with photonic nanojet lensing, extract four key aging phenotypes (cell size, shape, refractive index, and H2O2 efflux) from flowing cells in a high-throughput manner. Approximately 105 cells are quantified within 1 h, and NCC phenotype data were used to construct virtual aging trajectories in 3D space. The resulting phenotypic heterogeneity aligns with RNA-sequencing gene-expression profiles, enabling reliable prediction of therapeutic efficacy. The platform rapidly identifies optimally aged cells without perturbation, providing a robust tool for real-time monitoring and quality control in regenerative-cell manufacturing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信