主动光控正面开环复分解聚合

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
D. R. Darby, A. J. Greenlee, R. H. Bean, D. C. Fairchild, V. C. Rodriguez, A. L. Jansen, S. C. Gallegos, S. P. Ramirez, J. S. Moore, S. C. Leguizamon, L. N. Appelhans
{"title":"主动光控正面开环复分解聚合","authors":"D. R. Darby, A. J. Greenlee, R. H. Bean, D. C. Fairchild, V. C. Rodriguez, A. L. Jansen, S. C. Gallegos, S. P. Ramirez, J. S. Moore, S. C. Leguizamon, L. N. Appelhans","doi":"10.1038/s41467-025-61484-9","DOIUrl":null,"url":null,"abstract":"<p>Frontal ring-opening metathesis polymerization (FROMP) is a promising energy-efficient approach to fabricate polymeric materials. Recent advances have demonstrated FROMP for diverse applications, including additive manufacturing, composites, and foams. However, the characteristic properties of the front are currently controlled primarily by varying the resin composition or the environmental conditions. In this work we present an approach to control FROMP of dicyclopentadiene (DCPD) using photochemical methods. A photobase generator is used to inhibit FROMP of DCPD with UV light while a photosensitizer and co-initiator are used to accelerate FROMP with blue light, enabling orthogonal active photocontrol of front velocity. In addition, photoinhibition-enabled lithographic patterning of frontal polymerizations is demonstrated. Frontal polymerizations are spatially controlled, redirected, and even split into diverging fronts. This work establishes a foundation for advanced control of frontal polymerizations, enabling innovation in traditional and additive manufacturing, as well as emerging processes like morphogenic manufacturing.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"11 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Active light-controlled frontal ring-opening metathesis polymerization\",\"authors\":\"D. R. Darby, A. J. Greenlee, R. H. Bean, D. C. Fairchild, V. C. Rodriguez, A. L. Jansen, S. C. Gallegos, S. P. Ramirez, J. S. Moore, S. C. Leguizamon, L. N. Appelhans\",\"doi\":\"10.1038/s41467-025-61484-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Frontal ring-opening metathesis polymerization (FROMP) is a promising energy-efficient approach to fabricate polymeric materials. Recent advances have demonstrated FROMP for diverse applications, including additive manufacturing, composites, and foams. However, the characteristic properties of the front are currently controlled primarily by varying the resin composition or the environmental conditions. In this work we present an approach to control FROMP of dicyclopentadiene (DCPD) using photochemical methods. A photobase generator is used to inhibit FROMP of DCPD with UV light while a photosensitizer and co-initiator are used to accelerate FROMP with blue light, enabling orthogonal active photocontrol of front velocity. In addition, photoinhibition-enabled lithographic patterning of frontal polymerizations is demonstrated. Frontal polymerizations are spatially controlled, redirected, and even split into diverging fronts. This work establishes a foundation for advanced control of frontal polymerizations, enabling innovation in traditional and additive manufacturing, as well as emerging processes like morphogenic manufacturing.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-61484-9\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61484-9","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

正面开环复分解聚合(FROMP)是一种很有前途的高能效高分子材料制备方法。最近的进展已经证明了FROMP的各种应用,包括增材制造、复合材料和泡沫。然而,目前主要通过改变树脂成分或环境条件来控制前端的特性。本文介绍了一种利用光化学方法控制双环戊二烯(DCPD)的FROMP的方法。利用光碱发生器用紫外光抑制DCPD的FROMP,利用光敏剂和助引发剂用蓝光加速DCPD的FROMP,实现了前速度的正交主动光控。此外,光抑制使正面聚合的光刻图案被证明。锋面聚合在空间上受到控制,重定向,甚至分裂成分散的锋面。这项工作为正面聚合的先进控制奠定了基础,使传统制造和增材制造以及形态制造等新兴工艺得以创新。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Active light-controlled frontal ring-opening metathesis polymerization

Active light-controlled frontal ring-opening metathesis polymerization

Frontal ring-opening metathesis polymerization (FROMP) is a promising energy-efficient approach to fabricate polymeric materials. Recent advances have demonstrated FROMP for diverse applications, including additive manufacturing, composites, and foams. However, the characteristic properties of the front are currently controlled primarily by varying the resin composition or the environmental conditions. In this work we present an approach to control FROMP of dicyclopentadiene (DCPD) using photochemical methods. A photobase generator is used to inhibit FROMP of DCPD with UV light while a photosensitizer and co-initiator are used to accelerate FROMP with blue light, enabling orthogonal active photocontrol of front velocity. In addition, photoinhibition-enabled lithographic patterning of frontal polymerizations is demonstrated. Frontal polymerizations are spatially controlled, redirected, and even split into diverging fronts. This work establishes a foundation for advanced control of frontal polymerizations, enabling innovation in traditional and additive manufacturing, as well as emerging processes like morphogenic manufacturing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信