TIVelo:利用集群级轨迹推断的RNA速度估计

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Muyang Ge, Jishuai Miao, Ji Qi, Xiaocheng Zhou, Zhixiang Lin
{"title":"TIVelo:利用集群级轨迹推断的RNA速度估计","authors":"Muyang Ge, Jishuai Miao, Ji Qi, Xiaocheng Zhou, Zhixiang Lin","doi":"10.1038/s41467-025-61628-x","DOIUrl":null,"url":null,"abstract":"<p>RNA velocity inference is a valuable tool for understanding cell development, differentiation, and disease progression. However, existing RNA velocity inference methods typically rely on explicit assumptions of ordinary differential equations (ODE), which prohibits them from capturing complex transcriptomic expression patterns. In this study, we introduce TIVelo, a RNA velocity estimation approach that first determines the velocity direction at the cell cluster level based on trajectory inference, before estimating velocity for individual cells. TIVelo calculates an orientation score to infer the direction at the cluster level without an explicit ODE assumption, which effectively captures complex transcriptional patterns, avoiding potential inconsistencies in velocity estimation for genes that do not follow the simple ODE assumption. We validated the effectiveness of TIVelo by its application to 16 real datasets and the comparison with six benchmarking methods.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"21 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TIVelo: RNA velocity estimation leveraging cluster-level trajectory inference\",\"authors\":\"Muyang Ge, Jishuai Miao, Ji Qi, Xiaocheng Zhou, Zhixiang Lin\",\"doi\":\"10.1038/s41467-025-61628-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>RNA velocity inference is a valuable tool for understanding cell development, differentiation, and disease progression. However, existing RNA velocity inference methods typically rely on explicit assumptions of ordinary differential equations (ODE), which prohibits them from capturing complex transcriptomic expression patterns. In this study, we introduce TIVelo, a RNA velocity estimation approach that first determines the velocity direction at the cell cluster level based on trajectory inference, before estimating velocity for individual cells. TIVelo calculates an orientation score to infer the direction at the cluster level without an explicit ODE assumption, which effectively captures complex transcriptional patterns, avoiding potential inconsistencies in velocity estimation for genes that do not follow the simple ODE assumption. We validated the effectiveness of TIVelo by its application to 16 real datasets and the comparison with six benchmarking methods.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-61628-x\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61628-x","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

RNA速度推断是了解细胞发育、分化和疾病进展的有价值的工具。然而,现有的RNA速度推断方法通常依赖于明确的常微分方程(ODE)假设,这使得它们无法捕获复杂的转录组表达模式。在本研究中,我们引入了一种RNA速度估计方法TIVelo,该方法首先根据轨迹推断确定细胞簇水平的速度方向,然后再估计单个细胞的速度。TIVelo在没有明确的ODE假设的情况下计算方向分数来推断集群水平的方向,这有效地捕获了复杂的转录模式,避免了不遵循简单ODE假设的基因在速度估计中的潜在不一致。通过将TIVelo应用于16个真实数据集,并与6种基准测试方法进行比较,验证了TIVelo的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

TIVelo: RNA velocity estimation leveraging cluster-level trajectory inference

TIVelo: RNA velocity estimation leveraging cluster-level trajectory inference

RNA velocity inference is a valuable tool for understanding cell development, differentiation, and disease progression. However, existing RNA velocity inference methods typically rely on explicit assumptions of ordinary differential equations (ODE), which prohibits them from capturing complex transcriptomic expression patterns. In this study, we introduce TIVelo, a RNA velocity estimation approach that first determines the velocity direction at the cell cluster level based on trajectory inference, before estimating velocity for individual cells. TIVelo calculates an orientation score to infer the direction at the cluster level without an explicit ODE assumption, which effectively captures complex transcriptional patterns, avoiding potential inconsistencies in velocity estimation for genes that do not follow the simple ODE assumption. We validated the effectiveness of TIVelo by its application to 16 real datasets and the comparison with six benchmarking methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信