Muyang Ge, Jishuai Miao, Ji Qi, Xiaocheng Zhou, Zhixiang Lin
{"title":"TIVelo:利用集群级轨迹推断的RNA速度估计","authors":"Muyang Ge, Jishuai Miao, Ji Qi, Xiaocheng Zhou, Zhixiang Lin","doi":"10.1038/s41467-025-61628-x","DOIUrl":null,"url":null,"abstract":"<p>RNA velocity inference is a valuable tool for understanding cell development, differentiation, and disease progression. However, existing RNA velocity inference methods typically rely on explicit assumptions of ordinary differential equations (ODE), which prohibits them from capturing complex transcriptomic expression patterns. In this study, we introduce TIVelo, a RNA velocity estimation approach that first determines the velocity direction at the cell cluster level based on trajectory inference, before estimating velocity for individual cells. TIVelo calculates an orientation score to infer the direction at the cluster level without an explicit ODE assumption, which effectively captures complex transcriptional patterns, avoiding potential inconsistencies in velocity estimation for genes that do not follow the simple ODE assumption. We validated the effectiveness of TIVelo by its application to 16 real datasets and the comparison with six benchmarking methods.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"21 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TIVelo: RNA velocity estimation leveraging cluster-level trajectory inference\",\"authors\":\"Muyang Ge, Jishuai Miao, Ji Qi, Xiaocheng Zhou, Zhixiang Lin\",\"doi\":\"10.1038/s41467-025-61628-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>RNA velocity inference is a valuable tool for understanding cell development, differentiation, and disease progression. However, existing RNA velocity inference methods typically rely on explicit assumptions of ordinary differential equations (ODE), which prohibits them from capturing complex transcriptomic expression patterns. In this study, we introduce TIVelo, a RNA velocity estimation approach that first determines the velocity direction at the cell cluster level based on trajectory inference, before estimating velocity for individual cells. TIVelo calculates an orientation score to infer the direction at the cluster level without an explicit ODE assumption, which effectively captures complex transcriptional patterns, avoiding potential inconsistencies in velocity estimation for genes that do not follow the simple ODE assumption. We validated the effectiveness of TIVelo by its application to 16 real datasets and the comparison with six benchmarking methods.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-61628-x\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61628-x","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
RNA velocity inference is a valuable tool for understanding cell development, differentiation, and disease progression. However, existing RNA velocity inference methods typically rely on explicit assumptions of ordinary differential equations (ODE), which prohibits them from capturing complex transcriptomic expression patterns. In this study, we introduce TIVelo, a RNA velocity estimation approach that first determines the velocity direction at the cell cluster level based on trajectory inference, before estimating velocity for individual cells. TIVelo calculates an orientation score to infer the direction at the cluster level without an explicit ODE assumption, which effectively captures complex transcriptional patterns, avoiding potential inconsistencies in velocity estimation for genes that do not follow the simple ODE assumption. We validated the effectiveness of TIVelo by its application to 16 real datasets and the comparison with six benchmarking methods.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.