Jihoon Kim, Dong Won Kim, Jong Hui Choi, William A. Goddard, Jeung Ku Kang
{"title":"人工智能驱动的多主元素合金的最佳水分解设计","authors":"Jihoon Kim, Dong Won Kim, Jong Hui Choi, William A. Goddard, Jeung Ku Kang","doi":"10.1073/pnas.2504226122","DOIUrl":null,"url":null,"abstract":"Water splitting for hydrogen production is essential in advancing the hydrogen economy. Multiprincipal element alloys offer promising opportunities for optimizing this process, yet their vast compositional space and the presence of local minima pose significant challenges for experimental and AI-driven exploration. To overcome these challenges, an AI framework is developed by integrating Gaussian Process Regression with a configuration entropy–based acquisition function for screening and a design of experiments (DoE) for data-efficient overpotential mapping. Through Bayesian optimization across 16.2 million chemical compositions, this entropy-screened and DoE dataset–trained AI identifies Fe <jats:sub>12</jats:sub> Co <jats:sub>28</jats:sub> Ni <jats:sub>33</jats:sub> Mo <jats:sub>17</jats:sub> Pd <jats:sub>5</jats:sub> Pt <jats:sub>5</jats:sub> as the best composition for water splitting within its search space. The alloy exhibits ultralow overpotentials of 24 mV for hydrogen evolution and 204 mV for oxygen evolution at 10 mA·cm <jats:sup>−2</jats:sup> with robust stability, surpassing state-of-the-art non-noble and noble metal electrocatalysts including Pt/C+IrO <jats:sub>2</jats:sub> , Pt <jats:sub>35</jats:sub> Ru <jats:sub>65</jats:sub> , and Ru–VO <jats:sub>2</jats:sub> —demonstrating remarkable performance beyond reach by contemporary experimental and AI frameworks.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"688 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AI-driven design of multiprincipal element alloys for optimal water splitting\",\"authors\":\"Jihoon Kim, Dong Won Kim, Jong Hui Choi, William A. Goddard, Jeung Ku Kang\",\"doi\":\"10.1073/pnas.2504226122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Water splitting for hydrogen production is essential in advancing the hydrogen economy. Multiprincipal element alloys offer promising opportunities for optimizing this process, yet their vast compositional space and the presence of local minima pose significant challenges for experimental and AI-driven exploration. To overcome these challenges, an AI framework is developed by integrating Gaussian Process Regression with a configuration entropy–based acquisition function for screening and a design of experiments (DoE) for data-efficient overpotential mapping. Through Bayesian optimization across 16.2 million chemical compositions, this entropy-screened and DoE dataset–trained AI identifies Fe <jats:sub>12</jats:sub> Co <jats:sub>28</jats:sub> Ni <jats:sub>33</jats:sub> Mo <jats:sub>17</jats:sub> Pd <jats:sub>5</jats:sub> Pt <jats:sub>5</jats:sub> as the best composition for water splitting within its search space. The alloy exhibits ultralow overpotentials of 24 mV for hydrogen evolution and 204 mV for oxygen evolution at 10 mA·cm <jats:sup>−2</jats:sup> with robust stability, surpassing state-of-the-art non-noble and noble metal electrocatalysts including Pt/C+IrO <jats:sub>2</jats:sub> , Pt <jats:sub>35</jats:sub> Ru <jats:sub>65</jats:sub> , and Ru–VO <jats:sub>2</jats:sub> —demonstrating remarkable performance beyond reach by contemporary experimental and AI frameworks.\",\"PeriodicalId\":20548,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"volume\":\"688 1\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1073/pnas.2504226122\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2504226122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
水裂解制氢对推进氢经济至关重要。多主元素合金为优化这一过程提供了很好的机会,但它们巨大的成分空间和局部极小值的存在对实验和人工智能驱动的探索构成了重大挑战。为了克服这些挑战,我们开发了一个AI框架,将高斯过程回归与基于配置熵的采集函数相结合,用于筛选和实验设计(DoE),以实现数据高效的过电位映射。通过对1620万种化学成分进行贝叶斯优化,这个经过熵筛选和DoE数据集训练的人工智能识别出Fe 12 Co 28 Ni 33 Mo 17 Pd 5 Pt 5是其搜索空间内最适合水分解的成分。在10 mA·cm−2下,该合金的析氢过电位为24 mV,析氧过电位为204 mV,稳定性强,超过了最先进的非贵金属和贵金属电催化剂,包括Pt/C+IrO 2、Pt 35 Ru 65和Ru - vo 2,表现出当代实验和人工智能框架无法达到的卓越性能。
AI-driven design of multiprincipal element alloys for optimal water splitting
Water splitting for hydrogen production is essential in advancing the hydrogen economy. Multiprincipal element alloys offer promising opportunities for optimizing this process, yet their vast compositional space and the presence of local minima pose significant challenges for experimental and AI-driven exploration. To overcome these challenges, an AI framework is developed by integrating Gaussian Process Regression with a configuration entropy–based acquisition function for screening and a design of experiments (DoE) for data-efficient overpotential mapping. Through Bayesian optimization across 16.2 million chemical compositions, this entropy-screened and DoE dataset–trained AI identifies Fe 12 Co 28 Ni 33 Mo 17 Pd 5 Pt 5 as the best composition for water splitting within its search space. The alloy exhibits ultralow overpotentials of 24 mV for hydrogen evolution and 204 mV for oxygen evolution at 10 mA·cm −2 with robust stability, surpassing state-of-the-art non-noble and noble metal electrocatalysts including Pt/C+IrO 2 , Pt 35 Ru 65 , and Ru–VO 2 —demonstrating remarkable performance beyond reach by contemporary experimental and AI frameworks.
期刊介绍:
The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.