用于无枝晶锌阳极的超强仿生“砖瓦”人工SEI

IF 17.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Matter Pub Date : 2025-07-08 DOI:10.1016/j.matt.2025.102269
Zhikun Guo, Zeping Liu, Yu Zhang, Haoran Li, Man Qi, Chenyang Zhao, Xin Zhang, Zeen Wu, Jiayin Yuan, Naiqing Zhang
{"title":"用于无枝晶锌阳极的超强仿生“砖瓦”人工SEI","authors":"Zhikun Guo, Zeping Liu, Yu Zhang, Haoran Li, Man Qi, Chenyang Zhao, Xin Zhang, Zeen Wu, Jiayin Yuan, Naiqing Zhang","doi":"10.1016/j.matt.2025.102269","DOIUrl":null,"url":null,"abstract":"Dendrite growth in Zn anodes poses a significant challenge for Zn-ion batteries, limiting their practical application. Current approaches using artificial solid electrolyte interphase (SEI) layers struggle to improve mechanical strength and ion transport simultaneously. Inspired by the \"brick-and-mortar\" microstructure model of natural shells, we engineered a robust bioinspired interfacial layer (BIL) to cap the anode and succeeded in inhibiting dendrite growth. The BIL exhibits a high Young’s modulus of 9.8 GPa, which flattens the depositional growth of Zn on the anode. Equally importantly, the ion conductivity in the presence of the BIL achieves 2.1 mS cm<sup>−1</sup>, sufficient to meet the required ion transfer. When evaluated in symmetric Zn cells, the BIL enables steady cyclic operation for 2,500 h at 1 mA cm<sup>−2</sup> with 1 mAh cm<sup>−2</sup>. Remarkably, at a limited amount of Zn as a BIL-protected anode in a Zn||MnO<sub>2</sub> full cell, the discharge capacity remains at 132 mAh g<sup>−1</sup> after 550 cycles.","PeriodicalId":388,"journal":{"name":"Matter","volume":"106 1","pages":""},"PeriodicalIF":17.3000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrastrong bioinspired “brick-and-mortar” artificial SEI for dendrite-free Zn anode\",\"authors\":\"Zhikun Guo, Zeping Liu, Yu Zhang, Haoran Li, Man Qi, Chenyang Zhao, Xin Zhang, Zeen Wu, Jiayin Yuan, Naiqing Zhang\",\"doi\":\"10.1016/j.matt.2025.102269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dendrite growth in Zn anodes poses a significant challenge for Zn-ion batteries, limiting their practical application. Current approaches using artificial solid electrolyte interphase (SEI) layers struggle to improve mechanical strength and ion transport simultaneously. Inspired by the \\\"brick-and-mortar\\\" microstructure model of natural shells, we engineered a robust bioinspired interfacial layer (BIL) to cap the anode and succeeded in inhibiting dendrite growth. The BIL exhibits a high Young’s modulus of 9.8 GPa, which flattens the depositional growth of Zn on the anode. Equally importantly, the ion conductivity in the presence of the BIL achieves 2.1 mS cm<sup>−1</sup>, sufficient to meet the required ion transfer. When evaluated in symmetric Zn cells, the BIL enables steady cyclic operation for 2,500 h at 1 mA cm<sup>−2</sup> with 1 mAh cm<sup>−2</sup>. Remarkably, at a limited amount of Zn as a BIL-protected anode in a Zn||MnO<sub>2</sub> full cell, the discharge capacity remains at 132 mAh g<sup>−1</sup> after 550 cycles.\",\"PeriodicalId\":388,\"journal\":{\"name\":\"Matter\",\"volume\":\"106 1\",\"pages\":\"\"},\"PeriodicalIF\":17.3000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matter\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.matt.2025.102269\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.matt.2025.102269","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

锌阳极的枝晶生长对锌离子电池的实际应用提出了重大挑战。目前使用人工固体电解质间相(SEI)层的方法难以同时提高机械强度和离子传输。受天然壳的“砖石”微观结构模型的启发,我们设计了一个强大的生物激发界面层(BIL)来覆盖阳极,并成功地抑制了枝晶的生长。该材料的杨氏模量高达9.8 GPa,使锌在阳极上的沉积生长趋于平缓。同样重要的是,离子电导率在BIL存在下达到2.1 mS cm−1,足以满足所需的离子转移。当在对称锌电池中进行评估时,BIL能够在1ma cm - 2和1mah cm - 2下稳定循环操作2500小时。值得注意的是,在Zn||MnO2充满电池中,以一定量的Zn作为bill保护阳极,在550次循环后,放电容量保持在132 mAh g−1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ultrastrong bioinspired “brick-and-mortar” artificial SEI for dendrite-free Zn anode

Ultrastrong bioinspired “brick-and-mortar” artificial SEI for dendrite-free Zn anode
Dendrite growth in Zn anodes poses a significant challenge for Zn-ion batteries, limiting their practical application. Current approaches using artificial solid electrolyte interphase (SEI) layers struggle to improve mechanical strength and ion transport simultaneously. Inspired by the "brick-and-mortar" microstructure model of natural shells, we engineered a robust bioinspired interfacial layer (BIL) to cap the anode and succeeded in inhibiting dendrite growth. The BIL exhibits a high Young’s modulus of 9.8 GPa, which flattens the depositional growth of Zn on the anode. Equally importantly, the ion conductivity in the presence of the BIL achieves 2.1 mS cm−1, sufficient to meet the required ion transfer. When evaluated in symmetric Zn cells, the BIL enables steady cyclic operation for 2,500 h at 1 mA cm−2 with 1 mAh cm−2. Remarkably, at a limited amount of Zn as a BIL-protected anode in a Zn||MnO2 full cell, the discharge capacity remains at 132 mAh g−1 after 550 cycles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信