{"title":"铅笔:一个全球和社区贡献的变体外显率公共档案。","authors":"Zhaopo Zhu, Ling Shang, Chuhan Shao, Zheng Wang, Xinxin Mao, Yuanfeng Huang, Pei Yu, Bin Li, Jinchen Li, Guihu Zhao","doi":"10.1016/j.jgg.2025.07.001","DOIUrl":null,"url":null,"abstract":"<p><p>Penetrance is a crucial indicator for accurately assessing disease risk and plays a vital role in disease research, gene therapy, and genetic counseling. However, with penetrance data dispersed across various sources, efficiently accessing and consolidating this information becomes a challenge. A comprehensive platform that integrates penetrance is urgently needed. Here, we present PenCards, a global, community-contributed public archive of variant penetrance, by first collecting penetrance data from all published literature and then using large international cohorts to specifically calculate the penetrance of autism-related variants. PenCards contains a total of 244,531 variants-including 239,244 single nucleotide variants, 4,994 insertions and deletions, and 293 copy number variants, covering approximately 300 phenotypes. We also provide a submission portal for the dynamic updating of penetrance. Additionally, to help users efficiently access genetic information, we comprehensively integrate over 150 variant- and gene-level resources. In summary, PenCards is a powerful platform designed to advance genetic research and diagnostics. PenCards is publicly available at https://genemed.tech/pencards/.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PenCards: a global and community-contributed public archive of variant penetrance.\",\"authors\":\"Zhaopo Zhu, Ling Shang, Chuhan Shao, Zheng Wang, Xinxin Mao, Yuanfeng Huang, Pei Yu, Bin Li, Jinchen Li, Guihu Zhao\",\"doi\":\"10.1016/j.jgg.2025.07.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Penetrance is a crucial indicator for accurately assessing disease risk and plays a vital role in disease research, gene therapy, and genetic counseling. However, with penetrance data dispersed across various sources, efficiently accessing and consolidating this information becomes a challenge. A comprehensive platform that integrates penetrance is urgently needed. Here, we present PenCards, a global, community-contributed public archive of variant penetrance, by first collecting penetrance data from all published literature and then using large international cohorts to specifically calculate the penetrance of autism-related variants. PenCards contains a total of 244,531 variants-including 239,244 single nucleotide variants, 4,994 insertions and deletions, and 293 copy number variants, covering approximately 300 phenotypes. We also provide a submission portal for the dynamic updating of penetrance. Additionally, to help users efficiently access genetic information, we comprehensively integrate over 150 variant- and gene-level resources. In summary, PenCards is a powerful platform designed to advance genetic research and diagnostics. PenCards is publicly available at https://genemed.tech/pencards/.</p>\",\"PeriodicalId\":54825,\"journal\":{\"name\":\"Journal of Genetics and Genomics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Genetics and Genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jgg.2025.07.001\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Genetics and Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jgg.2025.07.001","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
PenCards: a global and community-contributed public archive of variant penetrance.
Penetrance is a crucial indicator for accurately assessing disease risk and plays a vital role in disease research, gene therapy, and genetic counseling. However, with penetrance data dispersed across various sources, efficiently accessing and consolidating this information becomes a challenge. A comprehensive platform that integrates penetrance is urgently needed. Here, we present PenCards, a global, community-contributed public archive of variant penetrance, by first collecting penetrance data from all published literature and then using large international cohorts to specifically calculate the penetrance of autism-related variants. PenCards contains a total of 244,531 variants-including 239,244 single nucleotide variants, 4,994 insertions and deletions, and 293 copy number variants, covering approximately 300 phenotypes. We also provide a submission portal for the dynamic updating of penetrance. Additionally, to help users efficiently access genetic information, we comprehensively integrate over 150 variant- and gene-level resources. In summary, PenCards is a powerful platform designed to advance genetic research and diagnostics. PenCards is publicly available at https://genemed.tech/pencards/.
期刊介绍:
The Journal of Genetics and Genomics (JGG, formerly known as Acta Genetica Sinica ) is an international journal publishing peer-reviewed articles of novel and significant discoveries in the fields of genetics and genomics. Topics of particular interest include but are not limited to molecular genetics, developmental genetics, cytogenetics, epigenetics, medical genetics, population and evolutionary genetics, genomics and functional genomics as well as bioinformatics and computational biology.