视网膜和大脑复杂性之间反比关系的计算证据。

IF 2.3 4区 心理学 Q2 OPHTHALMOLOGY
Mitchell B Slapik
{"title":"视网膜和大脑复杂性之间反比关系的计算证据。","authors":"Mitchell B Slapik","doi":"10.1167/jov.25.8.9","DOIUrl":null,"url":null,"abstract":"<p><p>Visual neuroscientists have long observed an inverse relationship between brain and retinal complexity: As brain complexity increases across species, retinas adapt to simpler visual processing. Lindsey et al. previously provided a computational explanation for this pattern, showing that shallow networks encode complex features in their first stage of processing, whereas deep networks encode simpler features. Here, these findings are extended to a suite of representational analyses and show that shallow networks generate high-dimensional representations with linear decision boundaries and specific visual features that can feed directly into behavioral responses. In contrast, deep networks generate low-dimensional representations with nonlinear decision boundaries and general visual features. These representations require further processing before they can produce the appropriate behavioral response. In summary, the findings extend a longstanding principle linking simpler retinal features to complex brains and offer a computational framework for understanding neural network behavior more generally.</p>","PeriodicalId":49955,"journal":{"name":"Journal of Vision","volume":"25 8","pages":"9"},"PeriodicalIF":2.3000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12240199/pdf/","citationCount":"0","resultStr":"{\"title\":\"Computational evidence for an inverse relationship between retinal and brain complexity.\",\"authors\":\"Mitchell B Slapik\",\"doi\":\"10.1167/jov.25.8.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Visual neuroscientists have long observed an inverse relationship between brain and retinal complexity: As brain complexity increases across species, retinas adapt to simpler visual processing. Lindsey et al. previously provided a computational explanation for this pattern, showing that shallow networks encode complex features in their first stage of processing, whereas deep networks encode simpler features. Here, these findings are extended to a suite of representational analyses and show that shallow networks generate high-dimensional representations with linear decision boundaries and specific visual features that can feed directly into behavioral responses. In contrast, deep networks generate low-dimensional representations with nonlinear decision boundaries and general visual features. These representations require further processing before they can produce the appropriate behavioral response. In summary, the findings extend a longstanding principle linking simpler retinal features to complex brains and offer a computational framework for understanding neural network behavior more generally.</p>\",\"PeriodicalId\":49955,\"journal\":{\"name\":\"Journal of Vision\",\"volume\":\"25 8\",\"pages\":\"9\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12240199/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vision\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1167/jov.25.8.9\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vision","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1167/jov.25.8.9","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

视觉神经科学家长期以来一直观察到大脑和视网膜复杂性之间的反比关系:随着大脑复杂性在物种间的增加,视网膜会适应更简单的视觉处理。Lindsey等人之前为这种模式提供了一种计算解释,表明浅层网络在处理的第一阶段编码复杂的特征,而深层网络编码更简单的特征。在这里,这些发现被扩展到一套表征分析,并表明浅层网络产生具有线性决策边界和特定视觉特征的高维表征,这些特征可以直接反馈到行为反应中。相比之下,深度网络生成具有非线性决策边界和一般视觉特征的低维表示。这些表征需要进一步处理才能产生适当的行为反应。总之,这些发现扩展了一个长期存在的原理,将简单的视网膜特征与复杂的大脑联系起来,并为更广泛地理解神经网络行为提供了一个计算框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Computational evidence for an inverse relationship between retinal and brain complexity.

Computational evidence for an inverse relationship between retinal and brain complexity.

Computational evidence for an inverse relationship between retinal and brain complexity.

Computational evidence for an inverse relationship between retinal and brain complexity.

Visual neuroscientists have long observed an inverse relationship between brain and retinal complexity: As brain complexity increases across species, retinas adapt to simpler visual processing. Lindsey et al. previously provided a computational explanation for this pattern, showing that shallow networks encode complex features in their first stage of processing, whereas deep networks encode simpler features. Here, these findings are extended to a suite of representational analyses and show that shallow networks generate high-dimensional representations with linear decision boundaries and specific visual features that can feed directly into behavioral responses. In contrast, deep networks generate low-dimensional representations with nonlinear decision boundaries and general visual features. These representations require further processing before they can produce the appropriate behavioral response. In summary, the findings extend a longstanding principle linking simpler retinal features to complex brains and offer a computational framework for understanding neural network behavior more generally.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Vision
Journal of Vision 医学-眼科学
CiteScore
2.90
自引率
5.60%
发文量
218
审稿时长
3-6 weeks
期刊介绍: Exploring all aspects of biological visual function, including spatial vision, perception, low vision, color vision and more, spanning the fields of neuroscience, psychology and psychophysics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信