Yoshihiro Ishikawa , Rachel Lennon , Federico Forneris , Johanna Myllyharju , Antti M. Salo
{"title":"胶原IV型生物合成:翻译后修饰的细胞内编排。","authors":"Yoshihiro Ishikawa , Rachel Lennon , Federico Forneris , Johanna Myllyharju , Antti M. Salo","doi":"10.1016/j.matbio.2025.07.002","DOIUrl":null,"url":null,"abstract":"<div><div>Collagen IV, an essential and evolutionarily conserved component of basement membranes, is one of the most extensively post-translationally modified proteins. Despite substantial research on fibrillar collagen biosynthesis, our understanding of collagen IV biosynthesis, including its post-translational modifications (PTMs), remains limited. Most PTMs occur intracellularly, primarily within the endoplasmic reticulum (ER). In this review, we examine the molecular ensemble that orchestrates collagen IV biosynthesis in the ER, highlighting the complex interplay between prolyl and lysyl hydroxylases, glycosyltransferases, and molecular chaperones. Furthermore, we discuss how defects in collagen IV and its PTMs contribute to various human pathologies, including Gould and Alport syndromes, fibrosis, and cancer. Understanding collagen IV PTMs is crucial for elucidating the molecular basis of these diseases and improving targeted treatments. By reviewing our knowledge of collagen IV biosynthesis, we illustrate how this evolutionarily conserved yet highly specialized molecular biosynthesis ensemble supports the diverse functions of collagen IV in health and disease.</div></div>","PeriodicalId":49851,"journal":{"name":"Matrix Biology","volume":"140 ","pages":"Pages 59-77"},"PeriodicalIF":4.5000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Collagen IV biosynthesis: Intracellular choreography of post-translational modifications\",\"authors\":\"Yoshihiro Ishikawa , Rachel Lennon , Federico Forneris , Johanna Myllyharju , Antti M. Salo\",\"doi\":\"10.1016/j.matbio.2025.07.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Collagen IV, an essential and evolutionarily conserved component of basement membranes, is one of the most extensively post-translationally modified proteins. Despite substantial research on fibrillar collagen biosynthesis, our understanding of collagen IV biosynthesis, including its post-translational modifications (PTMs), remains limited. Most PTMs occur intracellularly, primarily within the endoplasmic reticulum (ER). In this review, we examine the molecular ensemble that orchestrates collagen IV biosynthesis in the ER, highlighting the complex interplay between prolyl and lysyl hydroxylases, glycosyltransferases, and molecular chaperones. Furthermore, we discuss how defects in collagen IV and its PTMs contribute to various human pathologies, including Gould and Alport syndromes, fibrosis, and cancer. Understanding collagen IV PTMs is crucial for elucidating the molecular basis of these diseases and improving targeted treatments. By reviewing our knowledge of collagen IV biosynthesis, we illustrate how this evolutionarily conserved yet highly specialized molecular biosynthesis ensemble supports the diverse functions of collagen IV in health and disease.</div></div>\",\"PeriodicalId\":49851,\"journal\":{\"name\":\"Matrix Biology\",\"volume\":\"140 \",\"pages\":\"Pages 59-77\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matrix Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0945053X25000617\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matrix Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0945053X25000617","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Collagen IV biosynthesis: Intracellular choreography of post-translational modifications
Collagen IV, an essential and evolutionarily conserved component of basement membranes, is one of the most extensively post-translationally modified proteins. Despite substantial research on fibrillar collagen biosynthesis, our understanding of collagen IV biosynthesis, including its post-translational modifications (PTMs), remains limited. Most PTMs occur intracellularly, primarily within the endoplasmic reticulum (ER). In this review, we examine the molecular ensemble that orchestrates collagen IV biosynthesis in the ER, highlighting the complex interplay between prolyl and lysyl hydroxylases, glycosyltransferases, and molecular chaperones. Furthermore, we discuss how defects in collagen IV and its PTMs contribute to various human pathologies, including Gould and Alport syndromes, fibrosis, and cancer. Understanding collagen IV PTMs is crucial for elucidating the molecular basis of these diseases and improving targeted treatments. By reviewing our knowledge of collagen IV biosynthesis, we illustrate how this evolutionarily conserved yet highly specialized molecular biosynthesis ensemble supports the diverse functions of collagen IV in health and disease.
期刊介绍:
Matrix Biology (established in 1980 as Collagen and Related Research) is a cutting-edge journal that is devoted to publishing the latest results in matrix biology research. We welcome articles that reside at the nexus of understanding the cellular and molecular pathophysiology of the extracellular matrix. Matrix Biology focusses on solving elusive questions, opening new avenues of thought and discovery, and challenging longstanding biological paradigms.