评估乳腺CT微钙化检出率的混合模拟。

IF 1.7 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Journal of Medical Imaging Pub Date : 2025-11-01 Epub Date: 2025-07-03 DOI:10.1117/1.JMI.12.S2.S22015
Su Hyun Lyu, Andrey Makeev, Dan Li, Andreu Badal, Andrew M Hernandez, John M Boone, Stephen J Glick
{"title":"评估乳腺CT微钙化检出率的混合模拟。","authors":"Su Hyun Lyu, Andrey Makeev, Dan Li, Andreu Badal, Andrew M Hernandez, John M Boone, Stephen J Glick","doi":"10.1117/1.JMI.12.S2.S22015","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Virtual imaging trials (VITs) are of interest for regulatory evaluation because they enable faster and more cost-effective evaluation of new imaging technologies than patient clinical trials. Our purpose is to develop a hybrid VIT methodology for breast computed tomography (CT) applications and use it to investigate microcalcification detectability.</p><p><strong>Approach: </strong>Ray tracing was used to generate projection images of clusters of five microcalcifications which varied in diameter, chemical composition, and density. These simulated projection images were added to patient projection images acquired with the fourth-generation breast CT scanner from UC Davis (Doheny) and reconstructed using the Feldkamp filtered backprojection algorithm with varying apodization kernels. Volumes of interest and maximum intensity projections were extracted from the reconstructed volumes. Human observers (HOs) and deep learning model observers (DLMOs) were used to detect calcification clusters, and receiver operating characteristic curve analysis was used to analyze detection performance.</p><p><strong>Results: </strong>DLMO detected 0.18-mm type I calcifications with AUC = 0.80 and 0.21 mm calcifications with <math><mrow><mi>AUC</mi> <mo>=</mo> <mn>0.99</mn></mrow> </math> . HO performance was inferior to deep learning model observer performance, but both HO and DLMO detected 0.21-mm type I calcifications with <math><mrow><mi>AUC</mi> <mo>></mo> <mn>0.90</mn></mrow> </math> and 0.24-mm type I calcifications with near-perfect performance. Microcalcification clusters embedded in adipose tissue were more conspicuous than clusters embedded in fibroglandular tissue. There was superior detection performance for clusters located anteriorly within the breast compared with clusters located posteriorly within the breast.</p><p><strong>Conclusions: </strong>A hybrid approach for virtual imaging trials shows promise for the assessment of imaging systems across a broad range of parameters.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"12 Suppl 2","pages":"S22015"},"PeriodicalIF":1.7000,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12225739/pdf/","citationCount":"0","resultStr":"{\"title\":\"Hybrid simulation of breast CT for assessing microcalcification detectability.\",\"authors\":\"Su Hyun Lyu, Andrey Makeev, Dan Li, Andreu Badal, Andrew M Hernandez, John M Boone, Stephen J Glick\",\"doi\":\"10.1117/1.JMI.12.S2.S22015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Virtual imaging trials (VITs) are of interest for regulatory evaluation because they enable faster and more cost-effective evaluation of new imaging technologies than patient clinical trials. Our purpose is to develop a hybrid VIT methodology for breast computed tomography (CT) applications and use it to investigate microcalcification detectability.</p><p><strong>Approach: </strong>Ray tracing was used to generate projection images of clusters of five microcalcifications which varied in diameter, chemical composition, and density. These simulated projection images were added to patient projection images acquired with the fourth-generation breast CT scanner from UC Davis (Doheny) and reconstructed using the Feldkamp filtered backprojection algorithm with varying apodization kernels. Volumes of interest and maximum intensity projections were extracted from the reconstructed volumes. Human observers (HOs) and deep learning model observers (DLMOs) were used to detect calcification clusters, and receiver operating characteristic curve analysis was used to analyze detection performance.</p><p><strong>Results: </strong>DLMO detected 0.18-mm type I calcifications with AUC = 0.80 and 0.21 mm calcifications with <math><mrow><mi>AUC</mi> <mo>=</mo> <mn>0.99</mn></mrow> </math> . HO performance was inferior to deep learning model observer performance, but both HO and DLMO detected 0.21-mm type I calcifications with <math><mrow><mi>AUC</mi> <mo>></mo> <mn>0.90</mn></mrow> </math> and 0.24-mm type I calcifications with near-perfect performance. Microcalcification clusters embedded in adipose tissue were more conspicuous than clusters embedded in fibroglandular tissue. There was superior detection performance for clusters located anteriorly within the breast compared with clusters located posteriorly within the breast.</p><p><strong>Conclusions: </strong>A hybrid approach for virtual imaging trials shows promise for the assessment of imaging systems across a broad range of parameters.</p>\",\"PeriodicalId\":47707,\"journal\":{\"name\":\"Journal of Medical Imaging\",\"volume\":\"12 Suppl 2\",\"pages\":\"S22015\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12225739/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JMI.12.S2.S22015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JMI.12.S2.S22015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

目的:虚拟成像试验(VITs)对监管评估很有兴趣,因为它们能够比患者临床试验更快、更经济地评估新成像技术。我们的目的是开发一种用于乳腺计算机断层扫描(CT)应用的混合VIT方法,并使用它来研究微钙化的可检测性。方法:采用射线追踪技术生成5个微钙化簇的投影图像,这些微钙化簇的直径、化学成分和密度各不相同。这些模拟投影图像被添加到由加州大学戴维斯分校(Doheny)的第四代乳腺CT扫描仪获得的患者投影图像中,并使用具有不同apodization核的Feldkamp滤波反投影算法进行重建。从重建体中提取感兴趣的体块和最大强度投影。使用人类观察者(HOs)和深度学习模型观察者(DLMOs)检测钙化簇,并使用接收者工作特征曲线分析分析检测性能。结果:DLMO检测到0.18 mm的I型钙化,AUC = 0.80, 0.21 mm的钙化,AUC = 0.99。HO的性能不如深度学习模型观测器的性能,但HO和DLMO都检测到0.21 mm的I型钙化,AUC为0.90,0.24 mm的I型钙化,性能接近完美。嵌入脂肪组织的微钙化团簇比嵌入纤维腺组织的微钙化团簇更明显。与位于乳房后部的簇相比,位于乳房前部的簇具有更好的检测性能。结论:虚拟成像试验的混合方法显示了在广泛参数范围内评估成像系统的希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid simulation of breast CT for assessing microcalcification detectability.

Purpose: Virtual imaging trials (VITs) are of interest for regulatory evaluation because they enable faster and more cost-effective evaluation of new imaging technologies than patient clinical trials. Our purpose is to develop a hybrid VIT methodology for breast computed tomography (CT) applications and use it to investigate microcalcification detectability.

Approach: Ray tracing was used to generate projection images of clusters of five microcalcifications which varied in diameter, chemical composition, and density. These simulated projection images were added to patient projection images acquired with the fourth-generation breast CT scanner from UC Davis (Doheny) and reconstructed using the Feldkamp filtered backprojection algorithm with varying apodization kernels. Volumes of interest and maximum intensity projections were extracted from the reconstructed volumes. Human observers (HOs) and deep learning model observers (DLMOs) were used to detect calcification clusters, and receiver operating characteristic curve analysis was used to analyze detection performance.

Results: DLMO detected 0.18-mm type I calcifications with AUC = 0.80 and 0.21 mm calcifications with AUC = 0.99 . HO performance was inferior to deep learning model observer performance, but both HO and DLMO detected 0.21-mm type I calcifications with AUC > 0.90 and 0.24-mm type I calcifications with near-perfect performance. Microcalcification clusters embedded in adipose tissue were more conspicuous than clusters embedded in fibroglandular tissue. There was superior detection performance for clusters located anteriorly within the breast compared with clusters located posteriorly within the breast.

Conclusions: A hybrid approach for virtual imaging trials shows promise for the assessment of imaging systems across a broad range of parameters.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Medical Imaging
Journal of Medical Imaging RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
4.10
自引率
4.20%
发文量
0
期刊介绍: JMI covers fundamental and translational research, as well as applications, focused on medical imaging, which continue to yield physical and biomedical advancements in the early detection, diagnostics, and therapy of disease as well as in the understanding of normal. The scope of JMI includes: Imaging physics, Tomographic reconstruction algorithms (such as those in CT and MRI), Image processing and deep learning, Computer-aided diagnosis and quantitative image analysis, Visualization and modeling, Picture archiving and communications systems (PACS), Image perception and observer performance, Technology assessment, Ultrasonic imaging, Image-guided procedures, Digital pathology, Biomedical applications of biomedical imaging. JMI allows for the peer-reviewed communication and archiving of scientific developments, translational and clinical applications, reviews, and recommendations for the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信