{"title":"外质体蛋白质组学揭示了烟草识别、梨抑制的炭疽菌外质体效应因子CfXyn11A。","authors":"Chenyang Han, Shutian Tao, Zhihua Xie, Fengquan Liu, Shaoling Zhang","doi":"10.1186/s43897-025-00161-3","DOIUrl":null,"url":null,"abstract":"<p><p>Colletotrichum fructicola is a hemibiotrophic fungal plant pathogen that transitions from biotrophic growth on living host tissue to necrotrophic tissue destruction. During the hemibiotrophic phase, numerous proteins are secreted into the apoplast, mediating host‒pathogen interactions. In this study, we employed apoplastic proteomics and RNA-seq to analyse the proteins secreted during the interaction between C. fructicola and pear. A secreted xylanase, CfXyn11A, was identified as a dual-function effector. In the nonhost Nicotiana benthamiana, it triggered immune responses, including reactive oxygen species production and programmed cell death. However, CfXyn11A evades detection in the host pear, enabling its role in cell wall degradation and nutrient acquisition. Genetic and biochemical assays confirmed that the immune-triggering function of CfXyn11A relies on its apoplastic localization and is independent of enzymatic activity. Additionally, we identified an aspartic protease-like protein, PbXIP1, in the pear apoplast, which binds CfXyn11A to suppress its enzymatic activity and virulence. This study highlights the role of apoplastic proteomics in elucidating the molecular mechanisms underlying plant immunity and pathogen virulence and emphasizes the contrasting outcomes of CfXyn11A in different host contexts. The findings provide new insights into the interplay between extracellular effectors and plant defense proteins during fungal infection.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"5 1","pages":"42"},"PeriodicalIF":10.6000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12232838/pdf/","citationCount":"0","resultStr":"{\"title\":\"Apoplastic proteomic reveals Colletotrichum fructicola effector CfXyn11A recognized by tobacco and suppressed by pear in the apoplast.\",\"authors\":\"Chenyang Han, Shutian Tao, Zhihua Xie, Fengquan Liu, Shaoling Zhang\",\"doi\":\"10.1186/s43897-025-00161-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Colletotrichum fructicola is a hemibiotrophic fungal plant pathogen that transitions from biotrophic growth on living host tissue to necrotrophic tissue destruction. During the hemibiotrophic phase, numerous proteins are secreted into the apoplast, mediating host‒pathogen interactions. In this study, we employed apoplastic proteomics and RNA-seq to analyse the proteins secreted during the interaction between C. fructicola and pear. A secreted xylanase, CfXyn11A, was identified as a dual-function effector. In the nonhost Nicotiana benthamiana, it triggered immune responses, including reactive oxygen species production and programmed cell death. However, CfXyn11A evades detection in the host pear, enabling its role in cell wall degradation and nutrient acquisition. Genetic and biochemical assays confirmed that the immune-triggering function of CfXyn11A relies on its apoplastic localization and is independent of enzymatic activity. Additionally, we identified an aspartic protease-like protein, PbXIP1, in the pear apoplast, which binds CfXyn11A to suppress its enzymatic activity and virulence. This study highlights the role of apoplastic proteomics in elucidating the molecular mechanisms underlying plant immunity and pathogen virulence and emphasizes the contrasting outcomes of CfXyn11A in different host contexts. The findings provide new insights into the interplay between extracellular effectors and plant defense proteins during fungal infection.</p>\",\"PeriodicalId\":29970,\"journal\":{\"name\":\"Molecular Horticulture\",\"volume\":\"5 1\",\"pages\":\"42\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12232838/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Horticulture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s43897-025-00161-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HORTICULTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Horticulture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43897-025-00161-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HORTICULTURE","Score":null,"Total":0}
Apoplastic proteomic reveals Colletotrichum fructicola effector CfXyn11A recognized by tobacco and suppressed by pear in the apoplast.
Colletotrichum fructicola is a hemibiotrophic fungal plant pathogen that transitions from biotrophic growth on living host tissue to necrotrophic tissue destruction. During the hemibiotrophic phase, numerous proteins are secreted into the apoplast, mediating host‒pathogen interactions. In this study, we employed apoplastic proteomics and RNA-seq to analyse the proteins secreted during the interaction between C. fructicola and pear. A secreted xylanase, CfXyn11A, was identified as a dual-function effector. In the nonhost Nicotiana benthamiana, it triggered immune responses, including reactive oxygen species production and programmed cell death. However, CfXyn11A evades detection in the host pear, enabling its role in cell wall degradation and nutrient acquisition. Genetic and biochemical assays confirmed that the immune-triggering function of CfXyn11A relies on its apoplastic localization and is independent of enzymatic activity. Additionally, we identified an aspartic protease-like protein, PbXIP1, in the pear apoplast, which binds CfXyn11A to suppress its enzymatic activity and virulence. This study highlights the role of apoplastic proteomics in elucidating the molecular mechanisms underlying plant immunity and pathogen virulence and emphasizes the contrasting outcomes of CfXyn11A in different host contexts. The findings provide new insights into the interplay between extracellular effectors and plant defense proteins during fungal infection.
期刊介绍:
Aims
Molecular Horticulture aims to publish research and review articles that significantly advance our knowledge in understanding how the horticultural crops or their parts operate mechanistically. Articles should have profound impacts not only in terms of high citation number or the like, but more importantly on the direction of the horticultural research field.
Scope
Molecular Horticulture publishes original Research Articles, Letters, and Reviews on novel discoveries on the following, but not limited to, aspects of horticultural plants (including medicinal plants):
▪ Developmental and evolutionary biology
▪ Physiology, biochemistry and cell biology
▪ Plant-microbe and plant-environment interactions
▪ Genetics and epigenetics
▪ Molecular breeding and biotechnology
▪ Secondary metabolism and synthetic biology
▪ Multi-omics dealing with data sets of genome, transcriptome, proteome, metabolome, epigenome and/or microbiome.
The journal also welcomes research articles using model plants that reveal mechanisms and/or principles readily applicable to horticultural plants, translational research articles involving application of basic knowledge (including those of model plants) to the horticultural crops, novel Methods and Resources of broad interest.
In addition, the journal publishes Editorial, News and View, and Commentary and Perspective on current, significant events and topics in global horticultural fields with international interests.