优化作物产量预测:达万热地区离群点检测算法的深入分析。

Q2 Environmental Science
The Scientific World Journal Pub Date : 2025-06-29 eCollection Date: 2025-01-01 DOI:10.1155/tswj/9312639
C S Anu, C R Nirmala, A Bhowmik, A Johnson Santhosh
{"title":"优化作物产量预测:达万热地区离群点检测算法的深入分析。","authors":"C S Anu, C R Nirmala, A Bhowmik, A Johnson Santhosh","doi":"10.1155/tswj/9312639","DOIUrl":null,"url":null,"abstract":"<p><p>Crop yield prediction is a critical aspect of agricultural planning and resource allocation, with outlier detection algorithms playing a vital role in refining the accuracy of predictive models. This research focuses on optimizing crop yield prediction in the Davangere region through a thorough analysis of outlier detection algorithms applied to the local agricultural dataset. Six prominent algorithms, including isolation forest, elliptic envelope, one-class SVM, iterative R, spatial singular value decomposition (SSVD), and spatial multiview outlier detection (SMVOD), are systematically evaluated. The study emphasizes the significance of accurate crop yield predictions in local agriculture and assesses each algorithm's performance using precision, recall, accuracy, and <i>F</i>1 score metrics. Elliptic envelope demonstrates its efficacy in handling the unique characteristics of the Davangere dataset. This method demonstrated improved performance in refining the crop yield prediction model by identifying and removing outliers, thereby contributing to more accurate predictions and optimized planning in the dynamic landscape of the Davangere region.</p>","PeriodicalId":22985,"journal":{"name":"The Scientific World Journal","volume":"2025 ","pages":"9312639"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12229732/pdf/","citationCount":"0","resultStr":"{\"title\":\"Optimizing Crop Yield Prediction: An In-Depth Analysis of Outlier Detection Algorithms on Davangere Region.\",\"authors\":\"C S Anu, C R Nirmala, A Bhowmik, A Johnson Santhosh\",\"doi\":\"10.1155/tswj/9312639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Crop yield prediction is a critical aspect of agricultural planning and resource allocation, with outlier detection algorithms playing a vital role in refining the accuracy of predictive models. This research focuses on optimizing crop yield prediction in the Davangere region through a thorough analysis of outlier detection algorithms applied to the local agricultural dataset. Six prominent algorithms, including isolation forest, elliptic envelope, one-class SVM, iterative R, spatial singular value decomposition (SSVD), and spatial multiview outlier detection (SMVOD), are systematically evaluated. The study emphasizes the significance of accurate crop yield predictions in local agriculture and assesses each algorithm's performance using precision, recall, accuracy, and <i>F</i>1 score metrics. Elliptic envelope demonstrates its efficacy in handling the unique characteristics of the Davangere dataset. This method demonstrated improved performance in refining the crop yield prediction model by identifying and removing outliers, thereby contributing to more accurate predictions and optimized planning in the dynamic landscape of the Davangere region.</p>\",\"PeriodicalId\":22985,\"journal\":{\"name\":\"The Scientific World Journal\",\"volume\":\"2025 \",\"pages\":\"9312639\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12229732/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Scientific World Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/tswj/9312639\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Scientific World Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/tswj/9312639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

摘要

作物产量预测是农业规划和资源配置的一个重要方面,而离群值检测算法在提高预测模型的准确性方面起着至关重要的作用。本研究的重点是通过对应用于当地农业数据集的离群值检测算法的深入分析,优化达万热地区的作物产量预测。对隔离森林算法、椭圆包络算法、一类支持向量机算法、迭代R算法、空间奇异值分解算法(SSVD)和空间多视点异常点检测算法(SMVOD)进行了系统评价。该研究强调了准确作物产量预测在当地农业中的重要性,并使用精度、召回率、准确性和F1评分指标评估了每种算法的性能。椭圆包络证明了它在处理Davangere数据集的独特特征方面的有效性。该方法通过识别和去除异常值,改善了作物产量预测模型的性能,从而有助于更准确的预测和达万热地区动态景观的优化规划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing Crop Yield Prediction: An In-Depth Analysis of Outlier Detection Algorithms on Davangere Region.

Crop yield prediction is a critical aspect of agricultural planning and resource allocation, with outlier detection algorithms playing a vital role in refining the accuracy of predictive models. This research focuses on optimizing crop yield prediction in the Davangere region through a thorough analysis of outlier detection algorithms applied to the local agricultural dataset. Six prominent algorithms, including isolation forest, elliptic envelope, one-class SVM, iterative R, spatial singular value decomposition (SSVD), and spatial multiview outlier detection (SMVOD), are systematically evaluated. The study emphasizes the significance of accurate crop yield predictions in local agriculture and assesses each algorithm's performance using precision, recall, accuracy, and F1 score metrics. Elliptic envelope demonstrates its efficacy in handling the unique characteristics of the Davangere dataset. This method demonstrated improved performance in refining the crop yield prediction model by identifying and removing outliers, thereby contributing to more accurate predictions and optimized planning in the dynamic landscape of the Davangere region.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Scientific World Journal
The Scientific World Journal 综合性期刊-综合性期刊
CiteScore
5.60
自引率
0.00%
发文量
170
审稿时长
3.7 months
期刊介绍: The Scientific World Journal is a peer-reviewed, Open Access journal that publishes original research, reviews, and clinical studies covering a wide range of subjects in science, technology, and medicine. The journal is divided into 81 subject areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信