{"title":"利用低成本GNSS接收机网络近实时监测水汽输送。","authors":"Jizhong Wu, Hongyang Ma, Wei Wu, Dashuai Cheng","doi":"10.1038/s41598-025-10603-z","DOIUrl":null,"url":null,"abstract":"<p><p>Water vapor plays a vital role in weather variations, making it essential to monitor atmospheric water vapor content for reliable weather forecasts. This study investigates the feasibility of utilizing a low-cost GNSS network to monitor water vapor transport during a heavy precipitation event. The zenith wet delay (ZWD) products are retrieved in GNSS data processing and then transformed to integrated water vapor (IWV). In addition, the impact of various factors, including near real-time products, weighted mean temperature ([Formula: see text]) estimation models, and the sensitivity of the conversion factor to [Formula: see text] variations are investigated in this study. Results demonstrate that: (1) Phase center variation (PCV) corrections, often unavailable for low-cost antennas, are crucial for accurate ZWD estimation, and the absence of these corrections may result in underestimations of the ZWD by several millimeters. (2) Near real-time GNSS products demonstrate comparable accuracy to final products, enabling timely IWV monitoring. (3) ZWD estimated from low-cost stations exhibit strong agreement with those from geodesic-grade stations, demonstrating their reliability. (4) GPT3, GTrop, and GGNTm models could effectively convert ZWD to IWV, with negligible differences despite slight variations in [Formula: see text] estimation accuracy. (5) The network effectively captures the spatio-temporal evolution of IWV during the precipitation event, demonstrating its potential for high-resolution water vapor monitoring. These findings highlight the effectiveness of low-cost GNSS networks in providing valuable insights into atmospheric water vapor dynamics, contributing to improved weather forecasting and hydrological modeling.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"24095"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12230122/pdf/","citationCount":"0","resultStr":"{\"title\":\"Monitoring water vapor transport in near real-time with low-cost GNSS receiver network.\",\"authors\":\"Jizhong Wu, Hongyang Ma, Wei Wu, Dashuai Cheng\",\"doi\":\"10.1038/s41598-025-10603-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Water vapor plays a vital role in weather variations, making it essential to monitor atmospheric water vapor content for reliable weather forecasts. This study investigates the feasibility of utilizing a low-cost GNSS network to monitor water vapor transport during a heavy precipitation event. The zenith wet delay (ZWD) products are retrieved in GNSS data processing and then transformed to integrated water vapor (IWV). In addition, the impact of various factors, including near real-time products, weighted mean temperature ([Formula: see text]) estimation models, and the sensitivity of the conversion factor to [Formula: see text] variations are investigated in this study. Results demonstrate that: (1) Phase center variation (PCV) corrections, often unavailable for low-cost antennas, are crucial for accurate ZWD estimation, and the absence of these corrections may result in underestimations of the ZWD by several millimeters. (2) Near real-time GNSS products demonstrate comparable accuracy to final products, enabling timely IWV monitoring. (3) ZWD estimated from low-cost stations exhibit strong agreement with those from geodesic-grade stations, demonstrating their reliability. (4) GPT3, GTrop, and GGNTm models could effectively convert ZWD to IWV, with negligible differences despite slight variations in [Formula: see text] estimation accuracy. (5) The network effectively captures the spatio-temporal evolution of IWV during the precipitation event, demonstrating its potential for high-resolution water vapor monitoring. These findings highlight the effectiveness of low-cost GNSS networks in providing valuable insights into atmospheric water vapor dynamics, contributing to improved weather forecasting and hydrological modeling.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"24095\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12230122/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-10603-z\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-10603-z","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Monitoring water vapor transport in near real-time with low-cost GNSS receiver network.
Water vapor plays a vital role in weather variations, making it essential to monitor atmospheric water vapor content for reliable weather forecasts. This study investigates the feasibility of utilizing a low-cost GNSS network to monitor water vapor transport during a heavy precipitation event. The zenith wet delay (ZWD) products are retrieved in GNSS data processing and then transformed to integrated water vapor (IWV). In addition, the impact of various factors, including near real-time products, weighted mean temperature ([Formula: see text]) estimation models, and the sensitivity of the conversion factor to [Formula: see text] variations are investigated in this study. Results demonstrate that: (1) Phase center variation (PCV) corrections, often unavailable for low-cost antennas, are crucial for accurate ZWD estimation, and the absence of these corrections may result in underestimations of the ZWD by several millimeters. (2) Near real-time GNSS products demonstrate comparable accuracy to final products, enabling timely IWV monitoring. (3) ZWD estimated from low-cost stations exhibit strong agreement with those from geodesic-grade stations, demonstrating their reliability. (4) GPT3, GTrop, and GGNTm models could effectively convert ZWD to IWV, with negligible differences despite slight variations in [Formula: see text] estimation accuracy. (5) The network effectively captures the spatio-temporal evolution of IWV during the precipitation event, demonstrating its potential for high-resolution water vapor monitoring. These findings highlight the effectiveness of low-cost GNSS networks in providing valuable insights into atmospheric water vapor dynamics, contributing to improved weather forecasting and hydrological modeling.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.