量化踝足骨折后步态康复的新方法。

IF 1.7 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Imran Mahmood, Anam Raza, Tayyaba Sultana, Abbas A Dehghani-Sanij
{"title":"量化踝足骨折后步态康复的新方法。","authors":"Imran Mahmood, Anam Raza, Tayyaba Sultana, Abbas A Dehghani-Sanij","doi":"10.1177/09544119251348490","DOIUrl":null,"url":null,"abstract":"<p><p>Lower limb fragility fractures included a break in bone from the pelvis to the foot. Weight-bearing and walking stability stand as key performance indicators to quantify fracture restoration. Normally, progress in fracture rehabilitation is observed through clinical assessments and patients' responses, and modern research also presents instrumented gait analysis. There exists a gap to statistically compute the regaining in patients' weight-bearing ability and walking stability following fractures. This study introduces methods to advance the analysis of instrumented signals and evaluate walking stability in fracture-healing patients. The centre of pressure (CoP) signals were captured for four conditions: tibia/fibula/talus fracture near the ankle (AF), lower-leg shaft fracture (LF), calcaneus fractures (CF), and normal ankle (NA). The time derivative for CoP signals showed impulsive responses during the loading and unloading transitions which were then modelled and transformed to the frequency domain. The developed models were further analysed by applying Nyquist and Bode methods and margins of stability were calculated for the fractured and healthy subjects. Results showed a substantial decline (Kruskal-Wallis's test, <i>p</i> < 0.001) in the intralimb stability of all three fractures. Also, there was a strong interlimb dependency (<i>p</i> < 0.001) observed between fractured and intact limbs applying Spearman's correlation during double limb support periods. Overall, the calcaneus fracture (CF) exhibited minimum intralimb stability and increased interlimb dependency. These methods stand clinically important in monitoring patients' rehabilitation and in decision-making about alternative treatment plans.</p>","PeriodicalId":20666,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","volume":" ","pages":"9544119251348490"},"PeriodicalIF":1.7000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel methods to quantify gait rehabilitation following ankle-foot fractures.\",\"authors\":\"Imran Mahmood, Anam Raza, Tayyaba Sultana, Abbas A Dehghani-Sanij\",\"doi\":\"10.1177/09544119251348490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lower limb fragility fractures included a break in bone from the pelvis to the foot. Weight-bearing and walking stability stand as key performance indicators to quantify fracture restoration. Normally, progress in fracture rehabilitation is observed through clinical assessments and patients' responses, and modern research also presents instrumented gait analysis. There exists a gap to statistically compute the regaining in patients' weight-bearing ability and walking stability following fractures. This study introduces methods to advance the analysis of instrumented signals and evaluate walking stability in fracture-healing patients. The centre of pressure (CoP) signals were captured for four conditions: tibia/fibula/talus fracture near the ankle (AF), lower-leg shaft fracture (LF), calcaneus fractures (CF), and normal ankle (NA). The time derivative for CoP signals showed impulsive responses during the loading and unloading transitions which were then modelled and transformed to the frequency domain. The developed models were further analysed by applying Nyquist and Bode methods and margins of stability were calculated for the fractured and healthy subjects. Results showed a substantial decline (Kruskal-Wallis's test, <i>p</i> < 0.001) in the intralimb stability of all three fractures. Also, there was a strong interlimb dependency (<i>p</i> < 0.001) observed between fractured and intact limbs applying Spearman's correlation during double limb support periods. Overall, the calcaneus fracture (CF) exhibited minimum intralimb stability and increased interlimb dependency. These methods stand clinically important in monitoring patients' rehabilitation and in decision-making about alternative treatment plans.</p>\",\"PeriodicalId\":20666,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine\",\"volume\":\" \",\"pages\":\"9544119251348490\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09544119251348490\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544119251348490","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

下肢脆性骨折包括骨盆到足部的骨折。负重和行走稳定性是量化骨折恢复的关键性能指标。通常,骨折康复的进展是通过临床评估和患者反应来观察的,现代研究也提出了仪器步态分析。骨折后患者负重能力和行走稳定性的恢复在统计学上存在空白。本研究介绍了提高骨折愈合患者的仪器信号分析和评估行走稳定性的方法。采集四种情况下的压力中心(CoP)信号:胫骨/腓骨/距骨近踝骨折(AF)、小腿轴骨折(LF)、跟骨骨折(CF)和正常踝关节(NA)。在加载和卸载过渡期间,CoP信号的时间导数表现为脉冲响应,然后将其建模并转换到频域。应用Nyquist和Bode方法进一步分析所建立的模型,并计算骨折和健康受试者的稳定边际。结果显示出明显的下降(Kruskal-Wallis的测试,p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novel methods to quantify gait rehabilitation following ankle-foot fractures.

Lower limb fragility fractures included a break in bone from the pelvis to the foot. Weight-bearing and walking stability stand as key performance indicators to quantify fracture restoration. Normally, progress in fracture rehabilitation is observed through clinical assessments and patients' responses, and modern research also presents instrumented gait analysis. There exists a gap to statistically compute the regaining in patients' weight-bearing ability and walking stability following fractures. This study introduces methods to advance the analysis of instrumented signals and evaluate walking stability in fracture-healing patients. The centre of pressure (CoP) signals were captured for four conditions: tibia/fibula/talus fracture near the ankle (AF), lower-leg shaft fracture (LF), calcaneus fractures (CF), and normal ankle (NA). The time derivative for CoP signals showed impulsive responses during the loading and unloading transitions which were then modelled and transformed to the frequency domain. The developed models were further analysed by applying Nyquist and Bode methods and margins of stability were calculated for the fractured and healthy subjects. Results showed a substantial decline (Kruskal-Wallis's test, p < 0.001) in the intralimb stability of all three fractures. Also, there was a strong interlimb dependency (p < 0.001) observed between fractured and intact limbs applying Spearman's correlation during double limb support periods. Overall, the calcaneus fracture (CF) exhibited minimum intralimb stability and increased interlimb dependency. These methods stand clinically important in monitoring patients' rehabilitation and in decision-making about alternative treatment plans.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
5.60%
发文量
122
审稿时长
6 months
期刊介绍: The Journal of Engineering in Medicine is an interdisciplinary journal encompassing all aspects of engineering in medicine. The Journal is a vital tool for maintaining an understanding of the newest techniques and research in medical engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信