采用三维有限元分析方法研究颈椎脆弱位置人工颈椎间盘几何参数对脊柱应力分布的影响。

IF 1.7 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Yalda Nasiri, Amir Khosravifard
{"title":"采用三维有限元分析方法研究颈椎脆弱位置人工颈椎间盘几何参数对脊柱应力分布的影响。","authors":"Yalda Nasiri, Amir Khosravifard","doi":"10.1177/09544119251351175","DOIUrl":null,"url":null,"abstract":"<p><p>One of the most common diseases of the spine is the degenerative intervertebral disc, which in extreme cases requires surgery. Replacing a damaged disc with an artificial disc (AD) is a common treatment method. Nowadays, due to the extensive use of smartphones and other similar devices, our cervical spine is often in a vulnerable position, such as a bent position, which results in more stress on the components of the spine, especially intervertebral discs. In this research, the effects of geometrical parameters of an AD on the biomechanics of the cervical spine are investigated in a bent neck position, using the finite element method. In this regard, computed tomography scans of the neck of a 29-year-old male in two states of straight and bent neck are used. Nine different AD geometries are generated by varying three geometric design variables, including the height, position of the centre of rotation and rotation radius of the AD. The results of stress distribution in the spine for the straight and bent neck positions are compared, and the maximum von Mises stress on the AD and healthy discs are assessed to choose an optimum geometry. The results show that proper selection of the geometrical parameters of the AD can lead to up to an 85% reduction in the AD's maximum von Mises stress for a bent neck position. The sensitivity analysis shows that the location of the rotation centre has the highest impact on the distribution of von Mises stress in the artificial disc.</p>","PeriodicalId":20666,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","volume":" ","pages":"9544119251351175"},"PeriodicalIF":1.7000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating the effects of geometrical parameters of an artificial cervical disc in vulnerable neck positions on the stress distribution in the spine using 3D finite element analysis.\",\"authors\":\"Yalda Nasiri, Amir Khosravifard\",\"doi\":\"10.1177/09544119251351175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>One of the most common diseases of the spine is the degenerative intervertebral disc, which in extreme cases requires surgery. Replacing a damaged disc with an artificial disc (AD) is a common treatment method. Nowadays, due to the extensive use of smartphones and other similar devices, our cervical spine is often in a vulnerable position, such as a bent position, which results in more stress on the components of the spine, especially intervertebral discs. In this research, the effects of geometrical parameters of an AD on the biomechanics of the cervical spine are investigated in a bent neck position, using the finite element method. In this regard, computed tomography scans of the neck of a 29-year-old male in two states of straight and bent neck are used. Nine different AD geometries are generated by varying three geometric design variables, including the height, position of the centre of rotation and rotation radius of the AD. The results of stress distribution in the spine for the straight and bent neck positions are compared, and the maximum von Mises stress on the AD and healthy discs are assessed to choose an optimum geometry. The results show that proper selection of the geometrical parameters of the AD can lead to up to an 85% reduction in the AD's maximum von Mises stress for a bent neck position. The sensitivity analysis shows that the location of the rotation centre has the highest impact on the distribution of von Mises stress in the artificial disc.</p>\",\"PeriodicalId\":20666,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine\",\"volume\":\" \",\"pages\":\"9544119251351175\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09544119251351175\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544119251351175","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

脊柱最常见的疾病之一是退变性椎间盘,在极端情况下需要手术治疗。用人工椎间盘(AD)代替受损椎间盘是一种常见的治疗方法。如今,由于智能手机和其他类似设备的广泛使用,我们的颈椎经常处于一个脆弱的位置,比如弯曲的位置,这会对脊柱的组成部分,特别是椎间盘造成更大的压力。在本研究中,采用有限元法研究了弯曲颈位下AD的几何参数对颈椎生物力学的影响。在这方面,计算机断层扫描的颈部29岁的男性在两种状态的直颈和弯曲的使用。通过改变三个几何设计变量,包括高度、旋转中心位置和旋转半径,生成了九种不同的AD几何形状。比较直颈和弯颈位置下脊柱应力分布的结果,评估AD和健康椎间盘的最大von Mises应力,以选择最佳几何形状。结果表明,在弯曲颈部位置下,合理选择AD的几何参数可使AD的最大von Mises应力降低85%。灵敏度分析表明,旋转中心位置对人工盘内von Mises应力分布的影响最大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigating the effects of geometrical parameters of an artificial cervical disc in vulnerable neck positions on the stress distribution in the spine using 3D finite element analysis.

One of the most common diseases of the spine is the degenerative intervertebral disc, which in extreme cases requires surgery. Replacing a damaged disc with an artificial disc (AD) is a common treatment method. Nowadays, due to the extensive use of smartphones and other similar devices, our cervical spine is often in a vulnerable position, such as a bent position, which results in more stress on the components of the spine, especially intervertebral discs. In this research, the effects of geometrical parameters of an AD on the biomechanics of the cervical spine are investigated in a bent neck position, using the finite element method. In this regard, computed tomography scans of the neck of a 29-year-old male in two states of straight and bent neck are used. Nine different AD geometries are generated by varying three geometric design variables, including the height, position of the centre of rotation and rotation radius of the AD. The results of stress distribution in the spine for the straight and bent neck positions are compared, and the maximum von Mises stress on the AD and healthy discs are assessed to choose an optimum geometry. The results show that proper selection of the geometrical parameters of the AD can lead to up to an 85% reduction in the AD's maximum von Mises stress for a bent neck position. The sensitivity analysis shows that the location of the rotation centre has the highest impact on the distribution of von Mises stress in the artificial disc.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
5.60%
发文量
122
审稿时长
6 months
期刊介绍: The Journal of Engineering in Medicine is an interdisciplinary journal encompassing all aspects of engineering in medicine. The Journal is a vital tool for maintaining an understanding of the newest techniques and research in medical engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信