{"title":"Schwarz Primitive网固和片固结构的流动分析比较。","authors":"Derya Karaman, Hojjat Ghahramanzadeh Asl","doi":"10.1177/09544119251348696","DOIUrl":null,"url":null,"abstract":"<p><p>Scaffolds developed from Triply Periodic Minimal Surface (TPMS) structures effectively mimic the geometric, mechanical, and fluid transport characteristics of human bones. These porous architectures facilitate fluid flow and augment bone cell adhesion and proliferation through their substantial surface area. In this study, the potential of network solid and sheet solid TPMS scaffolds with the same Schwarz Primitive architecture was compared for bone regeneration. Both types were modeled at 50%, 60%, 70%, and 80% porosity. A computational fluid dynamics (CFD) analysis was conducted to assess parameters such as surface area, pore size, permeability, wall shear stress, and flow rate. These parameters are known to exert a significant influence on the behavior of bone cells. The results demonstrated that network solids exhibited enhanced permeability and augmented pore sizes, thereby facilitating cell migration and nutrient delivery. Conversely, sheet solids exhibited elevated surface areas, thereby fostering cell adhesion and proliferation. Despite exhibiting equivalent porosity, the two structures manifested discernible disparities in geometry and flow performance. Network solid structures generally provided more favorable conditions for fluid flow and mechanical stimulation. Nevertheless, the selection of network or sheet architectures should be informed by specific clinical needs and tissue requirements. The findings demonstrate that architectural differences significantly affect scaffold performance, and understanding these effects can help optimize scaffold design for bone tissue engineering applications.</p>","PeriodicalId":20666,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","volume":" ","pages":"676-686"},"PeriodicalIF":1.5000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flow analysis comparison of network solid and sheet solid structures for Schwarz Primitive.\",\"authors\":\"Derya Karaman, Hojjat Ghahramanzadeh Asl\",\"doi\":\"10.1177/09544119251348696\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Scaffolds developed from Triply Periodic Minimal Surface (TPMS) structures effectively mimic the geometric, mechanical, and fluid transport characteristics of human bones. These porous architectures facilitate fluid flow and augment bone cell adhesion and proliferation through their substantial surface area. In this study, the potential of network solid and sheet solid TPMS scaffolds with the same Schwarz Primitive architecture was compared for bone regeneration. Both types were modeled at 50%, 60%, 70%, and 80% porosity. A computational fluid dynamics (CFD) analysis was conducted to assess parameters such as surface area, pore size, permeability, wall shear stress, and flow rate. These parameters are known to exert a significant influence on the behavior of bone cells. The results demonstrated that network solids exhibited enhanced permeability and augmented pore sizes, thereby facilitating cell migration and nutrient delivery. Conversely, sheet solids exhibited elevated surface areas, thereby fostering cell adhesion and proliferation. Despite exhibiting equivalent porosity, the two structures manifested discernible disparities in geometry and flow performance. Network solid structures generally provided more favorable conditions for fluid flow and mechanical stimulation. Nevertheless, the selection of network or sheet architectures should be informed by specific clinical needs and tissue requirements. The findings demonstrate that architectural differences significantly affect scaffold performance, and understanding these effects can help optimize scaffold design for bone tissue engineering applications.</p>\",\"PeriodicalId\":20666,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine\",\"volume\":\" \",\"pages\":\"676-686\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09544119251348696\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544119251348696","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/7 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Flow analysis comparison of network solid and sheet solid structures for Schwarz Primitive.
Scaffolds developed from Triply Periodic Minimal Surface (TPMS) structures effectively mimic the geometric, mechanical, and fluid transport characteristics of human bones. These porous architectures facilitate fluid flow and augment bone cell adhesion and proliferation through their substantial surface area. In this study, the potential of network solid and sheet solid TPMS scaffolds with the same Schwarz Primitive architecture was compared for bone regeneration. Both types were modeled at 50%, 60%, 70%, and 80% porosity. A computational fluid dynamics (CFD) analysis was conducted to assess parameters such as surface area, pore size, permeability, wall shear stress, and flow rate. These parameters are known to exert a significant influence on the behavior of bone cells. The results demonstrated that network solids exhibited enhanced permeability and augmented pore sizes, thereby facilitating cell migration and nutrient delivery. Conversely, sheet solids exhibited elevated surface areas, thereby fostering cell adhesion and proliferation. Despite exhibiting equivalent porosity, the two structures manifested discernible disparities in geometry and flow performance. Network solid structures generally provided more favorable conditions for fluid flow and mechanical stimulation. Nevertheless, the selection of network or sheet architectures should be informed by specific clinical needs and tissue requirements. The findings demonstrate that architectural differences significantly affect scaffold performance, and understanding these effects can help optimize scaffold design for bone tissue engineering applications.
期刊介绍:
The Journal of Engineering in Medicine is an interdisciplinary journal encompassing all aspects of engineering in medicine. The Journal is a vital tool for maintaining an understanding of the newest techniques and research in medical engineering.