{"title":"工程希瓦氏菌MR-1生物电化学还原丙酮酸为d-乳酸。","authors":"Soshi Taguchi, Atsumi Hirose, Atsushi Kouzuma, Kazuya Watanabe","doi":"10.1016/j.jbiosc.2025.06.001","DOIUrl":null,"url":null,"abstract":"<p><p>Shewanella oneidensis MR-1 possesses an extracellular electron transfer (EET) pathway that enables bidirectional electron exchange with electrodes, making it a promising host for electro-fermentation (EF). However, the intracellular redox reactions driven by MR-1 during electron uptake from the electrodes remain poorly characterized. This study investigated the metabolic fate of pyruvate, a key fermentation intermediate, during inward electron transfer from a low-potential cathode. To examine this, an MR-1 derivative lacking formate dehydrogenase (ΔFDH), which is unable to utilize formate as an electron donor for pyruvate reduction, was incubated under open-circuit (OC) conditions and closed-circuit (CC) conditions with an electrode poised at -0.36 V (vs. the standard hydrogen electrode). A comparative analysis of pyruvate-derived metabolites under these conditions revealed that ΔFDH produced significantly higher amounts of d-lactate under CC conditions, indicating cathode-derived electron utilization for pyruvate reduction to d-lactate. Further gene knockout experiments in the ΔFDH background showed that two d-lactate dehydrogenases (D-LDHs) in MR-1, Dld (a quinone-dependent inner membrane D-LDH) and LdhA (an NADH-dependent D-LDH), contributed almost equally to cathode-dependent d-lactate production. These results indicate that electron transfer from electrodes to pyruvate in MR-1 cells involves both inner membrane quinone-mediated and NADH-mediated redox reactions, highlighting the potential applicability of MR-1 in diverse EF processes.</p>","PeriodicalId":15199,"journal":{"name":"Journal of bioscience and bioengineering","volume":" ","pages":"140-145"},"PeriodicalIF":2.9000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bioelectrochemical reduction of pyruvate to d-lactate by engineered Shewanella oneidensis MR-1.\",\"authors\":\"Soshi Taguchi, Atsumi Hirose, Atsushi Kouzuma, Kazuya Watanabe\",\"doi\":\"10.1016/j.jbiosc.2025.06.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Shewanella oneidensis MR-1 possesses an extracellular electron transfer (EET) pathway that enables bidirectional electron exchange with electrodes, making it a promising host for electro-fermentation (EF). However, the intracellular redox reactions driven by MR-1 during electron uptake from the electrodes remain poorly characterized. This study investigated the metabolic fate of pyruvate, a key fermentation intermediate, during inward electron transfer from a low-potential cathode. To examine this, an MR-1 derivative lacking formate dehydrogenase (ΔFDH), which is unable to utilize formate as an electron donor for pyruvate reduction, was incubated under open-circuit (OC) conditions and closed-circuit (CC) conditions with an electrode poised at -0.36 V (vs. the standard hydrogen electrode). A comparative analysis of pyruvate-derived metabolites under these conditions revealed that ΔFDH produced significantly higher amounts of d-lactate under CC conditions, indicating cathode-derived electron utilization for pyruvate reduction to d-lactate. Further gene knockout experiments in the ΔFDH background showed that two d-lactate dehydrogenases (D-LDHs) in MR-1, Dld (a quinone-dependent inner membrane D-LDH) and LdhA (an NADH-dependent D-LDH), contributed almost equally to cathode-dependent d-lactate production. These results indicate that electron transfer from electrodes to pyruvate in MR-1 cells involves both inner membrane quinone-mediated and NADH-mediated redox reactions, highlighting the potential applicability of MR-1 in diverse EF processes.</p>\",\"PeriodicalId\":15199,\"journal\":{\"name\":\"Journal of bioscience and bioengineering\",\"volume\":\" \",\"pages\":\"140-145\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of bioscience and bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jbiosc.2025.06.001\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of bioscience and bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.jbiosc.2025.06.001","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Bioelectrochemical reduction of pyruvate to d-lactate by engineered Shewanella oneidensis MR-1.
Shewanella oneidensis MR-1 possesses an extracellular electron transfer (EET) pathway that enables bidirectional electron exchange with electrodes, making it a promising host for electro-fermentation (EF). However, the intracellular redox reactions driven by MR-1 during electron uptake from the electrodes remain poorly characterized. This study investigated the metabolic fate of pyruvate, a key fermentation intermediate, during inward electron transfer from a low-potential cathode. To examine this, an MR-1 derivative lacking formate dehydrogenase (ΔFDH), which is unable to utilize formate as an electron donor for pyruvate reduction, was incubated under open-circuit (OC) conditions and closed-circuit (CC) conditions with an electrode poised at -0.36 V (vs. the standard hydrogen electrode). A comparative analysis of pyruvate-derived metabolites under these conditions revealed that ΔFDH produced significantly higher amounts of d-lactate under CC conditions, indicating cathode-derived electron utilization for pyruvate reduction to d-lactate. Further gene knockout experiments in the ΔFDH background showed that two d-lactate dehydrogenases (D-LDHs) in MR-1, Dld (a quinone-dependent inner membrane D-LDH) and LdhA (an NADH-dependent D-LDH), contributed almost equally to cathode-dependent d-lactate production. These results indicate that electron transfer from electrodes to pyruvate in MR-1 cells involves both inner membrane quinone-mediated and NADH-mediated redox reactions, highlighting the potential applicability of MR-1 in diverse EF processes.
期刊介绍:
The Journal of Bioscience and Bioengineering is a research journal publishing original full-length research papers, reviews, and Letters to the Editor. The Journal is devoted to the advancement and dissemination of knowledge concerning fermentation technology, biochemical engineering, food technology and microbiology.