{"title":"脆弱的平衡:自噬在神经退行性疾病进展中的作用。","authors":"Bharat Bhushan, Meenakshi Dhanawat, Garima, Kashish Wilson, Sumeet Gupta, Samrat Chauhan","doi":"10.2174/011570159X377552250627113915","DOIUrl":null,"url":null,"abstract":"<p><p>Autophagy relates to the mechanism underlying the intracellular constituents' breakdown by lysosomes. Autophagy plays an essential role in preserving and regulating cellular homeostasis by mediating the degradation of intracellular components and recycling their decomposition products. It was demonstrated that autophagy operates in-vivo in the starving reaction, initial growth, internal control of quality, and cell division. Autophagy malfunction is perhaps connected with cancer and neurological conditions, as demonstrated by current research. In conjunction with the identification of specific mutations associated with autophagy-related disorders and deeper knowledge of the pathophysiology of disorders caused by aberrant disintegration of particular autophagy substrates, autophagy activation serves a vital part in prolonging lifespans and suppressing the process of aging. To safeguard the homeostasis within a cell, cells have developed sophisticated quality-control procedures for organelles and proteins. These quality-control mechanisms maintain cellular integrity through degradation by the autophagy-lysosome or ubiquitin-proteasome systems, as well as through protein folding assistance (or refolding of misfolded proteins) provided by molecular chaperones. A great deal of neurodegenerative illnesses are indicated by the development of intracellular inclusions formed from misfolded proteins, which are believed to be an outcome of defective autophagy. Additionally, it was recently discovered that neurodegenerative illnesses are also linked with mutations in key autophagy-related genes. However, pathogenic proteins like α-synuclein and amyloid β cause damage to the autophagy system. This paper examines the recent advancements in our understanding of the link between autophagic abnormalities and the development of neurological disorders, and proposes that activating autophagy could serve as a potential therapeutic strategy.</p>","PeriodicalId":10905,"journal":{"name":"Current Neuropharmacology","volume":" ","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Fragile Balance: Autophagy's Role in Neurodegenerative Disease Progression.\",\"authors\":\"Bharat Bhushan, Meenakshi Dhanawat, Garima, Kashish Wilson, Sumeet Gupta, Samrat Chauhan\",\"doi\":\"10.2174/011570159X377552250627113915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Autophagy relates to the mechanism underlying the intracellular constituents' breakdown by lysosomes. Autophagy plays an essential role in preserving and regulating cellular homeostasis by mediating the degradation of intracellular components and recycling their decomposition products. It was demonstrated that autophagy operates in-vivo in the starving reaction, initial growth, internal control of quality, and cell division. Autophagy malfunction is perhaps connected with cancer and neurological conditions, as demonstrated by current research. In conjunction with the identification of specific mutations associated with autophagy-related disorders and deeper knowledge of the pathophysiology of disorders caused by aberrant disintegration of particular autophagy substrates, autophagy activation serves a vital part in prolonging lifespans and suppressing the process of aging. To safeguard the homeostasis within a cell, cells have developed sophisticated quality-control procedures for organelles and proteins. These quality-control mechanisms maintain cellular integrity through degradation by the autophagy-lysosome or ubiquitin-proteasome systems, as well as through protein folding assistance (or refolding of misfolded proteins) provided by molecular chaperones. A great deal of neurodegenerative illnesses are indicated by the development of intracellular inclusions formed from misfolded proteins, which are believed to be an outcome of defective autophagy. Additionally, it was recently discovered that neurodegenerative illnesses are also linked with mutations in key autophagy-related genes. However, pathogenic proteins like α-synuclein and amyloid β cause damage to the autophagy system. This paper examines the recent advancements in our understanding of the link between autophagic abnormalities and the development of neurological disorders, and proposes that activating autophagy could serve as a potential therapeutic strategy.</p>\",\"PeriodicalId\":10905,\"journal\":{\"name\":\"Current Neuropharmacology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Neuropharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/011570159X377552250627113915\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Neuropharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/011570159X377552250627113915","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
The Fragile Balance: Autophagy's Role in Neurodegenerative Disease Progression.
Autophagy relates to the mechanism underlying the intracellular constituents' breakdown by lysosomes. Autophagy plays an essential role in preserving and regulating cellular homeostasis by mediating the degradation of intracellular components and recycling their decomposition products. It was demonstrated that autophagy operates in-vivo in the starving reaction, initial growth, internal control of quality, and cell division. Autophagy malfunction is perhaps connected with cancer and neurological conditions, as demonstrated by current research. In conjunction with the identification of specific mutations associated with autophagy-related disorders and deeper knowledge of the pathophysiology of disorders caused by aberrant disintegration of particular autophagy substrates, autophagy activation serves a vital part in prolonging lifespans and suppressing the process of aging. To safeguard the homeostasis within a cell, cells have developed sophisticated quality-control procedures for organelles and proteins. These quality-control mechanisms maintain cellular integrity through degradation by the autophagy-lysosome or ubiquitin-proteasome systems, as well as through protein folding assistance (or refolding of misfolded proteins) provided by molecular chaperones. A great deal of neurodegenerative illnesses are indicated by the development of intracellular inclusions formed from misfolded proteins, which are believed to be an outcome of defective autophagy. Additionally, it was recently discovered that neurodegenerative illnesses are also linked with mutations in key autophagy-related genes. However, pathogenic proteins like α-synuclein and amyloid β cause damage to the autophagy system. This paper examines the recent advancements in our understanding of the link between autophagic abnormalities and the development of neurological disorders, and proposes that activating autophagy could serve as a potential therapeutic strategy.
期刊介绍:
Current Neuropharmacology aims to provide current, comprehensive/mini reviews and guest edited issues of all areas of neuropharmacology and related matters of neuroscience. The reviews cover the fields of molecular, cellular, and systems/behavioural aspects of neuropharmacology and neuroscience.
The journal serves as a comprehensive, multidisciplinary expert forum for neuropharmacologists and neuroscientists.