在斯基子晶格的拓扑带中检测到具有多极自旋进动的短波磁振子。

IF 9.6 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Communications Materials Pub Date : 2025-01-01 Epub Date: 2025-07-04 DOI:10.1038/s43246-025-00858-4
Ping Che, Riccardo Ciola, Markus Garst, Volodymyr Kravchuk, Priya R Baral, Arnaud Magrez, Helmuth Berger, Thomas Schönenberger, Henrik M Rønnow, Dirk Grundler
{"title":"在斯基子晶格的拓扑带中检测到具有多极自旋进动的短波磁振子。","authors":"Ping Che, Riccardo Ciola, Markus Garst, Volodymyr Kravchuk, Priya R Baral, Arnaud Magrez, Helmuth Berger, Thomas Schönenberger, Henrik M Rønnow, Dirk Grundler","doi":"10.1038/s43246-025-00858-4","DOIUrl":null,"url":null,"abstract":"<p><p>Topological magnon bands enable uni-directional edge transport without backscattering, enhancing the robustness of magnonic circuits and providing a novel platform for exploring quantum transport phenomena. Magnetic skyrmion lattices, in particular, host a manifold of topological magnon bands with multipole character and non-reciprocal dispersions. These modes have been explored already in the short and long wavelength limit, but previously employed techniques were unable to access intermediate wavelengths comparable to inter-skyrmion distances. Here, we report the detection of such magnons with wavevectors ∣q∣ ≃ 48 rad μm<sup>-1</sup> in the metastable skyrmion lattice phase of the bulk chiral magnet Cu<sub>2</sub>OSeO<sub>3</sub> using Brillouin light scattering microscopy. Thanks to its high sensitivity and broad bandwidth various multipole excitation modes could be resolved over a wide magnetic field regime. Besides the known counterclockwise, breathing and clockwise modes with dipole character, quantitative comparison of frequencies and spectral weights to theoretical predictions enabled the additional identification of a quadrupole mode and, possibly, a sextupole mode. Our work highlights the potential of skyrmionic phases for the design of magnonic devices exploiting topological magnon states at GHz frequencies.</p>","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":"6 1","pages":"139"},"PeriodicalIF":9.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12227311/pdf/","citationCount":"0","resultStr":"{\"title\":\"Short-wave magnons with multipole spin precession detected in the topological bands of a skyrmion lattice.\",\"authors\":\"Ping Che, Riccardo Ciola, Markus Garst, Volodymyr Kravchuk, Priya R Baral, Arnaud Magrez, Helmuth Berger, Thomas Schönenberger, Henrik M Rønnow, Dirk Grundler\",\"doi\":\"10.1038/s43246-025-00858-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Topological magnon bands enable uni-directional edge transport without backscattering, enhancing the robustness of magnonic circuits and providing a novel platform for exploring quantum transport phenomena. Magnetic skyrmion lattices, in particular, host a manifold of topological magnon bands with multipole character and non-reciprocal dispersions. These modes have been explored already in the short and long wavelength limit, but previously employed techniques were unable to access intermediate wavelengths comparable to inter-skyrmion distances. Here, we report the detection of such magnons with wavevectors ∣q∣ ≃ 48 rad μm<sup>-1</sup> in the metastable skyrmion lattice phase of the bulk chiral magnet Cu<sub>2</sub>OSeO<sub>3</sub> using Brillouin light scattering microscopy. Thanks to its high sensitivity and broad bandwidth various multipole excitation modes could be resolved over a wide magnetic field regime. Besides the known counterclockwise, breathing and clockwise modes with dipole character, quantitative comparison of frequencies and spectral weights to theoretical predictions enabled the additional identification of a quadrupole mode and, possibly, a sextupole mode. Our work highlights the potential of skyrmionic phases for the design of magnonic devices exploiting topological magnon states at GHz frequencies.</p>\",\"PeriodicalId\":10589,\"journal\":{\"name\":\"Communications Materials\",\"volume\":\"6 1\",\"pages\":\"139\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12227311/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s43246-025-00858-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43246-025-00858-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

拓扑磁振子能带实现无后向散射的单向边缘输运,增强了磁振子电路的鲁棒性,为探索量子输运现象提供了新的平台。特别是磁斯基子晶格,承载了多种具有多极特征和非互易色散的拓扑磁振子带。这些模式已经在短波长范围内进行了探索,但是以前使用的技术无法获得与天子间距离相当的中间波长。本文报道了用布里渊光散射显微镜在体手性磁体Cu2OSeO3的亚稳天子晶格相中探测到波长为∣q∣≃48 rad μm-1的磁振子。由于其高灵敏度和宽带宽,可以在宽磁场范围内分辨各种多极激励模式。除了已知的具有偶极子特征的逆时针、呼吸和顺时针模式外,将频率和频谱权重与理论预测进行定量比较,可以进一步确定四极子模式,也可能是六极子模式。我们的工作强调了skyrmionic相位在设计利用GHz频率拓扑磁振子态的磁振子器件方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Short-wave magnons with multipole spin precession detected in the topological bands of a skyrmion lattice.

Topological magnon bands enable uni-directional edge transport without backscattering, enhancing the robustness of magnonic circuits and providing a novel platform for exploring quantum transport phenomena. Magnetic skyrmion lattices, in particular, host a manifold of topological magnon bands with multipole character and non-reciprocal dispersions. These modes have been explored already in the short and long wavelength limit, but previously employed techniques were unable to access intermediate wavelengths comparable to inter-skyrmion distances. Here, we report the detection of such magnons with wavevectors ∣q∣ ≃ 48 rad μm-1 in the metastable skyrmion lattice phase of the bulk chiral magnet Cu2OSeO3 using Brillouin light scattering microscopy. Thanks to its high sensitivity and broad bandwidth various multipole excitation modes could be resolved over a wide magnetic field regime. Besides the known counterclockwise, breathing and clockwise modes with dipole character, quantitative comparison of frequencies and spectral weights to theoretical predictions enabled the additional identification of a quadrupole mode and, possibly, a sextupole mode. Our work highlights the potential of skyrmionic phases for the design of magnonic devices exploiting topological magnon states at GHz frequencies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications Materials
Communications Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
12.10
自引率
1.30%
发文量
85
审稿时长
17 weeks
期刊介绍: Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信