{"title":"通过基面层兼容性最大化压电阵列的电压输出。","authors":"Muhammad Usaid Memon, Eoin P Hinchy, Sarah Guerin","doi":"10.1038/s43246-025-00854-8","DOIUrl":null,"url":null,"abstract":"<p><p>Piezoelectric energy harvesting, i.e. the interconversion of electrical and mechanical energy, has the potential to revolutionise how we generate sustainable power for electronic devices. Currently the majority of research into maximising the electrical output of piezoelectrics focuses on the material itself i.e. modulating the electromechanical properties via stoichiometry, crystal engineering, deposition technique, etc. Here we take a different approach, demonstrating that for direct force harvesting the base layer onto which piezoelectrics are mounted has a huge impact on the voltage output of commercial piezoelectric transducers. We almost triple the open-circuit voltage output of a small piezoelectric array from 2.8 to 7.5 Volts by changing the flexibility of the material they are adhered to. As well as conventional base layer materials we use a variety of 3D-printed geometries, which offer a low-cost and efficient method for controlling the dynamics of a piezoelectric-based interface. The goal is that by demonstrating this phenomenon using widely used lead-based piezoelectrics, that it can be utilised for increasing the power output of sustainable alternatives.</p>","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":"6 1","pages":"134"},"PeriodicalIF":9.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12221967/pdf/","citationCount":"0","resultStr":"{\"title\":\"Maximizing the voltage output of piezoelectric arrays via base layer compatibility.\",\"authors\":\"Muhammad Usaid Memon, Eoin P Hinchy, Sarah Guerin\",\"doi\":\"10.1038/s43246-025-00854-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Piezoelectric energy harvesting, i.e. the interconversion of electrical and mechanical energy, has the potential to revolutionise how we generate sustainable power for electronic devices. Currently the majority of research into maximising the electrical output of piezoelectrics focuses on the material itself i.e. modulating the electromechanical properties via stoichiometry, crystal engineering, deposition technique, etc. Here we take a different approach, demonstrating that for direct force harvesting the base layer onto which piezoelectrics are mounted has a huge impact on the voltage output of commercial piezoelectric transducers. We almost triple the open-circuit voltage output of a small piezoelectric array from 2.8 to 7.5 Volts by changing the flexibility of the material they are adhered to. As well as conventional base layer materials we use a variety of 3D-printed geometries, which offer a low-cost and efficient method for controlling the dynamics of a piezoelectric-based interface. The goal is that by demonstrating this phenomenon using widely used lead-based piezoelectrics, that it can be utilised for increasing the power output of sustainable alternatives.</p>\",\"PeriodicalId\":10589,\"journal\":{\"name\":\"Communications Materials\",\"volume\":\"6 1\",\"pages\":\"134\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12221967/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s43246-025-00854-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43246-025-00854-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Maximizing the voltage output of piezoelectric arrays via base layer compatibility.
Piezoelectric energy harvesting, i.e. the interconversion of electrical and mechanical energy, has the potential to revolutionise how we generate sustainable power for electronic devices. Currently the majority of research into maximising the electrical output of piezoelectrics focuses on the material itself i.e. modulating the electromechanical properties via stoichiometry, crystal engineering, deposition technique, etc. Here we take a different approach, demonstrating that for direct force harvesting the base layer onto which piezoelectrics are mounted has a huge impact on the voltage output of commercial piezoelectric transducers. We almost triple the open-circuit voltage output of a small piezoelectric array from 2.8 to 7.5 Volts by changing the flexibility of the material they are adhered to. As well as conventional base layer materials we use a variety of 3D-printed geometries, which offer a low-cost and efficient method for controlling the dynamics of a piezoelectric-based interface. The goal is that by demonstrating this phenomenon using widely used lead-based piezoelectrics, that it can be utilised for increasing the power output of sustainable alternatives.
期刊介绍:
Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.