Pietro Gabellini, Eduardo Rossi, Raffaello Cioni, Marco Pistolesi, Lukas P Baumgartner, Costanza Bonadonna
{"title":"x射线显微断层摄影揭示了火山灰聚集体的内部特征。","authors":"Pietro Gabellini, Eduardo Rossi, Raffaello Cioni, Marco Pistolesi, Lukas P Baumgartner, Costanza Bonadonna","doi":"10.1038/s43247-025-02378-y","DOIUrl":null,"url":null,"abstract":"<p><p>Volcanic ash aggregation occurs during transport in the atmosphere when individual ash particles collide and stick together. It significantly impacts ash residence time in the atmosphere, with major consequences for hazard assessment and ash dispersal forecasts. Nonetheless, aggregation processes are still not adequately parametrized, mostly due to the low preservation potential of most aggregate types. We present here the first, detailed structural and morphological characterization of the major aggregate types, combining an innovative field collection strategy, which allows for the original aggregate structure to be preserved at deposition, coupled to X-Ray micro-tomography. Resulting observations together with weather information, allowed for the structure of fragile ash clusters and of the elusive cored Ash Pellets (cAP1s) to be fully resolved and their genesis to be better described. The collected dataset represents a fundamental advancement towards a comprehensive characterization of the principal aggregate categories, which is key to accurately interpreting and modelling the process of volcanic ash aggregation and dispersal.</p>","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":"6 1","pages":"521"},"PeriodicalIF":8.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12226349/pdf/","citationCount":"0","resultStr":"{\"title\":\"X-Ray micro-tomography unveils the internal features of volcanic ash aggregates.\",\"authors\":\"Pietro Gabellini, Eduardo Rossi, Raffaello Cioni, Marco Pistolesi, Lukas P Baumgartner, Costanza Bonadonna\",\"doi\":\"10.1038/s43247-025-02378-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Volcanic ash aggregation occurs during transport in the atmosphere when individual ash particles collide and stick together. It significantly impacts ash residence time in the atmosphere, with major consequences for hazard assessment and ash dispersal forecasts. Nonetheless, aggregation processes are still not adequately parametrized, mostly due to the low preservation potential of most aggregate types. We present here the first, detailed structural and morphological characterization of the major aggregate types, combining an innovative field collection strategy, which allows for the original aggregate structure to be preserved at deposition, coupled to X-Ray micro-tomography. Resulting observations together with weather information, allowed for the structure of fragile ash clusters and of the elusive cored Ash Pellets (cAP1s) to be fully resolved and their genesis to be better described. The collected dataset represents a fundamental advancement towards a comprehensive characterization of the principal aggregate categories, which is key to accurately interpreting and modelling the process of volcanic ash aggregation and dispersal.</p>\",\"PeriodicalId\":10530,\"journal\":{\"name\":\"Communications Earth & Environment\",\"volume\":\"6 1\",\"pages\":\"521\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12226349/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Earth & Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1038/s43247-025-02378-y\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Earth & Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1038/s43247-025-02378-y","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
X-Ray micro-tomography unveils the internal features of volcanic ash aggregates.
Volcanic ash aggregation occurs during transport in the atmosphere when individual ash particles collide and stick together. It significantly impacts ash residence time in the atmosphere, with major consequences for hazard assessment and ash dispersal forecasts. Nonetheless, aggregation processes are still not adequately parametrized, mostly due to the low preservation potential of most aggregate types. We present here the first, detailed structural and morphological characterization of the major aggregate types, combining an innovative field collection strategy, which allows for the original aggregate structure to be preserved at deposition, coupled to X-Ray micro-tomography. Resulting observations together with weather information, allowed for the structure of fragile ash clusters and of the elusive cored Ash Pellets (cAP1s) to be fully resolved and their genesis to be better described. The collected dataset represents a fundamental advancement towards a comprehensive characterization of the principal aggregate categories, which is key to accurately interpreting and modelling the process of volcanic ash aggregation and dispersal.
期刊介绍:
Communications Earth & Environment is an open access journal from Nature Portfolio publishing high-quality research, reviews and commentary in all areas of the Earth, environmental and planetary sciences. Research papers published by the journal represent significant advances that bring new insight to a specialized area in Earth science, planetary science or environmental science.
Communications Earth & Environment has a 2-year impact factor of 7.9 (2022 Journal Citation Reports®). Articles published in the journal in 2022 were downloaded 1,412,858 times. Median time from submission to the first editorial decision is 8 days.