Pu Wu, Wanting Xiao, Junjie Ni, Yuming Lou, Chaoyang Xu
{"title":"USP44通过EZH2蛋白稳定性促进三阴性乳腺癌化疗耐药","authors":"Pu Wu, Wanting Xiao, Junjie Ni, Yuming Lou, Chaoyang Xu","doi":"10.1080/15384047.2025.2529652","DOIUrl":null,"url":null,"abstract":"<p><p>Triple negative breast cancer (TNBC), a highly invasive breast cancer, is one of the leading causes of cancer-related mortality worldwide. Although chemotherapy remains the standard of care for TNBC, the development of chemotherapy resistance significantly limits its clinical efficacy. In this study, we identified the deubiquitinating enzyme USP44 as a contributor to chemoresistance in TNBC and investigated the potential regulatory feedback mechanisms involved. In this experimental study, we investigated the sensitivity of TNBC cells MDA-MB-231 and BT-549 to chemotherapy drugs after overexpression and knockdown of USP44 using CCK-8 reagent kit and flow cytometry analysis, respectively. Western blot was performed to evaluate the expression levels of relevant proteins. In vivo xenograft models were established to examine the effects of USP44 and its downstream targets on chemosensitivity. Co-immunoprecipitation assay and ubiquitination assay were conducted to identify interacting proteins and elucidate the underlying molecular mechanisms. Knockdown of USP44 increased the sensitivity of MDA-MB-231 and BT-549 cells to chemotherapeutic agents, accompanied by elevated levels of Cleaved PARP. In contrast, USP44 overexpression reduced drug sensitivity. Mechanistically, USP44 was found to interact with EZH2, preventing its ubiquitination and subsequent proteasomal degradation. Notably, treatment with GSK126, a specific EZH2 inhibitor, reversed the chemoresistance induced by USP44 overexpression. USP44/EZH2 signaling pathway is one of the key to causing the drug resistance of TNBC, warranting further clinical investigation.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"26 1","pages":"2529652"},"PeriodicalIF":4.6000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12233816/pdf/","citationCount":"0","resultStr":"{\"title\":\"USP44 promotes chemotherapeutic drug resistance of triple negative breast cancer through EZH2 protein stability.\",\"authors\":\"Pu Wu, Wanting Xiao, Junjie Ni, Yuming Lou, Chaoyang Xu\",\"doi\":\"10.1080/15384047.2025.2529652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Triple negative breast cancer (TNBC), a highly invasive breast cancer, is one of the leading causes of cancer-related mortality worldwide. Although chemotherapy remains the standard of care for TNBC, the development of chemotherapy resistance significantly limits its clinical efficacy. In this study, we identified the deubiquitinating enzyme USP44 as a contributor to chemoresistance in TNBC and investigated the potential regulatory feedback mechanisms involved. In this experimental study, we investigated the sensitivity of TNBC cells MDA-MB-231 and BT-549 to chemotherapy drugs after overexpression and knockdown of USP44 using CCK-8 reagent kit and flow cytometry analysis, respectively. Western blot was performed to evaluate the expression levels of relevant proteins. In vivo xenograft models were established to examine the effects of USP44 and its downstream targets on chemosensitivity. Co-immunoprecipitation assay and ubiquitination assay were conducted to identify interacting proteins and elucidate the underlying molecular mechanisms. Knockdown of USP44 increased the sensitivity of MDA-MB-231 and BT-549 cells to chemotherapeutic agents, accompanied by elevated levels of Cleaved PARP. In contrast, USP44 overexpression reduced drug sensitivity. Mechanistically, USP44 was found to interact with EZH2, preventing its ubiquitination and subsequent proteasomal degradation. Notably, treatment with GSK126, a specific EZH2 inhibitor, reversed the chemoresistance induced by USP44 overexpression. USP44/EZH2 signaling pathway is one of the key to causing the drug resistance of TNBC, warranting further clinical investigation.</p>\",\"PeriodicalId\":9536,\"journal\":{\"name\":\"Cancer Biology & Therapy\",\"volume\":\"26 1\",\"pages\":\"2529652\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12233816/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Biology & Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/15384047.2025.2529652\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Biology & Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15384047.2025.2529652","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
USP44 promotes chemotherapeutic drug resistance of triple negative breast cancer through EZH2 protein stability.
Triple negative breast cancer (TNBC), a highly invasive breast cancer, is one of the leading causes of cancer-related mortality worldwide. Although chemotherapy remains the standard of care for TNBC, the development of chemotherapy resistance significantly limits its clinical efficacy. In this study, we identified the deubiquitinating enzyme USP44 as a contributor to chemoresistance in TNBC and investigated the potential regulatory feedback mechanisms involved. In this experimental study, we investigated the sensitivity of TNBC cells MDA-MB-231 and BT-549 to chemotherapy drugs after overexpression and knockdown of USP44 using CCK-8 reagent kit and flow cytometry analysis, respectively. Western blot was performed to evaluate the expression levels of relevant proteins. In vivo xenograft models were established to examine the effects of USP44 and its downstream targets on chemosensitivity. Co-immunoprecipitation assay and ubiquitination assay were conducted to identify interacting proteins and elucidate the underlying molecular mechanisms. Knockdown of USP44 increased the sensitivity of MDA-MB-231 and BT-549 cells to chemotherapeutic agents, accompanied by elevated levels of Cleaved PARP. In contrast, USP44 overexpression reduced drug sensitivity. Mechanistically, USP44 was found to interact with EZH2, preventing its ubiquitination and subsequent proteasomal degradation. Notably, treatment with GSK126, a specific EZH2 inhibitor, reversed the chemoresistance induced by USP44 overexpression. USP44/EZH2 signaling pathway is one of the key to causing the drug resistance of TNBC, warranting further clinical investigation.
期刊介绍:
Cancer, the second leading cause of death, is a heterogenous group of over 100 diseases. Cancer is characterized by disordered and deregulated cellular and stromal proliferation accompanied by reduced cell death with the ability to survive under stresses of nutrient and growth factor deprivation, hypoxia, and loss of cell-to-cell contacts. At the molecular level, cancer is a genetic disease that develops due to the accumulation of mutations over time in somatic cells. The phenotype includes genomic instability and chromosomal aneuploidy that allows for acceleration of genetic change. Malignant transformation and tumor progression of any cell requires immortalization, loss of checkpoint control, deregulation of growth, and survival. A tremendous amount has been learned about the numerous cellular and molecular genetic changes and the host-tumor interactions that accompany tumor development and progression. It is the goal of the field of Molecular Oncology to use this knowledge to understand cancer pathogenesis and drug action, as well as to develop more effective diagnostic and therapeutic strategies for cancer. This includes preventative strategies as well as approaches to treat metastases. With the availability of the human genome sequence and genomic and proteomic approaches, a wealth of tools and resources are generating even more information. The challenge will be to make biological sense out of the information, to develop appropriate models and hypotheses and to translate information for the clinicians and the benefit of their patients. Cancer Biology & Therapy aims to publish original research on the molecular basis of cancer, including articles with translational relevance to diagnosis or therapy. We will include timely reviews covering the broad scope of the journal. The journal will also publish op-ed pieces and meeting reports of interest. The goal is to foster communication and rapid exchange of information through timely publication of important results using traditional as well as electronic formats. The journal and the outstanding Editorial Board will strive to maintain the highest standards for excellence in all activities to generate a valuable resource.