Sebastian L Rock, P Anders Nilsson, Johan Watz, Olle Calles, Martin Österling
{"title":"寄生贻贝诱导其鱼类宿主的上游运动:扩展表型的早期证据。","authors":"Sebastian L Rock, P Anders Nilsson, Johan Watz, Olle Calles, Martin Österling","doi":"10.1093/beheco/araf043","DOIUrl":null,"url":null,"abstract":"<p><p>Parasites often have a large impact on their hosts and can alter host phenotype to increase their own fitness, a phenomenon known as <i>extended phenotype</i>. Studies demonstrating extended phenotype for non-trophically transmitted parasites are scarce. Unionid mussels have a parasitic life stage adapted to parasitize fish which can affect host behavior, habitat use and growth rates, raising the question if parasitic freshwater mussels can also manipulate their host fish to compensate for downstream dispersal and to reach habitats favorable for newly excysted juvenile mussels. Wild-caught, parasite-naïve juvenile brown trout (<i>Salmo trutta</i>) were PIT-tagged, and half of the individuals were infested with parasitic larvae from the freshwater pearl mussel (<i>Margaritifera margaritifera</i>), all individuals were then returned to their home stream. During the following year, trout were tracked to investigate movement and habitat use, and also periodically recaptured to measure growth and body condition factor. The infested trout showed significantly higher upstream movement than non-infested trout and were more often recaptured in stream sections with slow-moving shallow water, particularly during the parasite excystment period (270 d post infestation). These data suggest that the juvenile mussels were successfully transported an average of 170 m upstream from the host trout release points to stream sections favorable for adult mussels. Infested trout survived as well as the non-infested, but had a significantly lower specific growth rate than non-infested trout. These results indicate a first example of extended phenotype in unionid mussels and highlight the importance of understanding glochidia-induced changes to host fish behavioral ecology.</p>","PeriodicalId":8840,"journal":{"name":"Behavioral Ecology","volume":"36 4","pages":"araf043"},"PeriodicalIF":2.2000,"publicationDate":"2025-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12228058/pdf/","citationCount":"0","resultStr":"{\"title\":\"Parasitic mussels induce upstream movement in their fish hosts: early evidence of extended phenotype.\",\"authors\":\"Sebastian L Rock, P Anders Nilsson, Johan Watz, Olle Calles, Martin Österling\",\"doi\":\"10.1093/beheco/araf043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Parasites often have a large impact on their hosts and can alter host phenotype to increase their own fitness, a phenomenon known as <i>extended phenotype</i>. Studies demonstrating extended phenotype for non-trophically transmitted parasites are scarce. Unionid mussels have a parasitic life stage adapted to parasitize fish which can affect host behavior, habitat use and growth rates, raising the question if parasitic freshwater mussels can also manipulate their host fish to compensate for downstream dispersal and to reach habitats favorable for newly excysted juvenile mussels. Wild-caught, parasite-naïve juvenile brown trout (<i>Salmo trutta</i>) were PIT-tagged, and half of the individuals were infested with parasitic larvae from the freshwater pearl mussel (<i>Margaritifera margaritifera</i>), all individuals were then returned to their home stream. During the following year, trout were tracked to investigate movement and habitat use, and also periodically recaptured to measure growth and body condition factor. The infested trout showed significantly higher upstream movement than non-infested trout and were more often recaptured in stream sections with slow-moving shallow water, particularly during the parasite excystment period (270 d post infestation). These data suggest that the juvenile mussels were successfully transported an average of 170 m upstream from the host trout release points to stream sections favorable for adult mussels. Infested trout survived as well as the non-infested, but had a significantly lower specific growth rate than non-infested trout. These results indicate a first example of extended phenotype in unionid mussels and highlight the importance of understanding glochidia-induced changes to host fish behavioral ecology.</p>\",\"PeriodicalId\":8840,\"journal\":{\"name\":\"Behavioral Ecology\",\"volume\":\"36 4\",\"pages\":\"araf043\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12228058/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Behavioral Ecology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1093/beheco/araf043\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioral Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/beheco/araf043","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
Parasitic mussels induce upstream movement in their fish hosts: early evidence of extended phenotype.
Parasites often have a large impact on their hosts and can alter host phenotype to increase their own fitness, a phenomenon known as extended phenotype. Studies demonstrating extended phenotype for non-trophically transmitted parasites are scarce. Unionid mussels have a parasitic life stage adapted to parasitize fish which can affect host behavior, habitat use and growth rates, raising the question if parasitic freshwater mussels can also manipulate their host fish to compensate for downstream dispersal and to reach habitats favorable for newly excysted juvenile mussels. Wild-caught, parasite-naïve juvenile brown trout (Salmo trutta) were PIT-tagged, and half of the individuals were infested with parasitic larvae from the freshwater pearl mussel (Margaritifera margaritifera), all individuals were then returned to their home stream. During the following year, trout were tracked to investigate movement and habitat use, and also periodically recaptured to measure growth and body condition factor. The infested trout showed significantly higher upstream movement than non-infested trout and were more often recaptured in stream sections with slow-moving shallow water, particularly during the parasite excystment period (270 d post infestation). These data suggest that the juvenile mussels were successfully transported an average of 170 m upstream from the host trout release points to stream sections favorable for adult mussels. Infested trout survived as well as the non-infested, but had a significantly lower specific growth rate than non-infested trout. These results indicate a first example of extended phenotype in unionid mussels and highlight the importance of understanding glochidia-induced changes to host fish behavioral ecology.
期刊介绍:
Studies on the whole range of behaving organisms, including plants, invertebrates, vertebrates, and humans, are included.
Behavioral Ecology construes the field in its broadest sense to include 1) the use of ecological and evolutionary processes to explain the occurrence and adaptive significance of behavior patterns; 2) the use of behavioral processes to predict ecological patterns, and 3) empirical, comparative analyses relating behavior to the environment in which it occurs.