结合BiLSTM和变压器的多级BiSTU网络用于PPG信号的ABP波形预测。

IF 5.4 2区 医学 Q3 ENGINEERING, BIOMEDICAL
Zheng Duanmu, Haojie Gong, Siyuan Lv, Wenyue Yan, Qianxi Cheng, Jinqiu Sang, Xilan Yang, Louqian Zhang
{"title":"结合BiLSTM和变压器的多级BiSTU网络用于PPG信号的ABP波形预测。","authors":"Zheng Duanmu,&nbsp;Haojie Gong,&nbsp;Siyuan Lv,&nbsp;Wenyue Yan,&nbsp;Qianxi Cheng,&nbsp;Jinqiu Sang,&nbsp;Xilan Yang,&nbsp;Louqian Zhang","doi":"10.1007/s10439-025-03787-y","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><p>Cardiovascular disease (CVD) remains a global health issue, and arterial blood pressure (ABP) waveforms provide critical physiological data that aid in the early diagnosis of CVD. However, existing pulse waveform evaluation methods are insufficient for accurately predicting ABP. This study aims to propose a novel U-net joint network architecture, the BiSTU Sequential Network, to predict high-quality ABP waveforms.</p><h3>Methods</h3><p>The designed BiSTU Sequential Network integrates a Bidirectional Long Short-Term Memory (Bi-LSTM) model to capture temporal dependencies, a Transformer model with multi-head attention mechanisms to extract detailed features, and a MultiRes Convolutional Block Attention Module U-Net (MCBAMU-Net) for multi-scale feature extraction. The model was trained using 12,000 vital sign records from 942 ICU patients.</p><h3>Results</h3><p>Experimental results demonstrate that the predicted ABP waveforms closely align with the actual waveforms, achieving a mean absolute error (MAE) of 1.78 ± 2.15 mmHg, a root mean square error (RMSE) of 2.79 mmHg, and an R-squared (R<span>\\(^{2}\\)</span>) of 0.98. The model meets the standards of the Association for the Advancement of Medical Instrumentation (AAMI), with MAEs of 2.94 ± 3.43 mmHg for systolic blood pressure (SBP) and 4.22 ± 5.18 mmHg for diastolic blood pressure (DBP). Under the British Hypertension Society (BHS) standards, the accuracy rates within 5 mmHg are 85.3% for DBP and 72.4% for SBP and exceed 97% within 15 mmHg.</p><h3>Conclusion</h3><p>The BiSTU Sequential Network exhibits significant potential for accurate, non-invasive prediction of arterial blood pressure. Its predictions closely match actual waveforms and comply with multiple clinical standards, indicating broad application prospects and contributing to the early diagnosis and monitoring of cardiovascular diseases.</p></div>","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":"53 10","pages":"2562 - 2579"},"PeriodicalIF":5.4000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Stage BiSTU Network Combining BiLSTM and Transformer for ABP Waveform Prediction from PPG Signals\",\"authors\":\"Zheng Duanmu,&nbsp;Haojie Gong,&nbsp;Siyuan Lv,&nbsp;Wenyue Yan,&nbsp;Qianxi Cheng,&nbsp;Jinqiu Sang,&nbsp;Xilan Yang,&nbsp;Louqian Zhang\",\"doi\":\"10.1007/s10439-025-03787-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Purpose</h3><p>Cardiovascular disease (CVD) remains a global health issue, and arterial blood pressure (ABP) waveforms provide critical physiological data that aid in the early diagnosis of CVD. However, existing pulse waveform evaluation methods are insufficient for accurately predicting ABP. This study aims to propose a novel U-net joint network architecture, the BiSTU Sequential Network, to predict high-quality ABP waveforms.</p><h3>Methods</h3><p>The designed BiSTU Sequential Network integrates a Bidirectional Long Short-Term Memory (Bi-LSTM) model to capture temporal dependencies, a Transformer model with multi-head attention mechanisms to extract detailed features, and a MultiRes Convolutional Block Attention Module U-Net (MCBAMU-Net) for multi-scale feature extraction. The model was trained using 12,000 vital sign records from 942 ICU patients.</p><h3>Results</h3><p>Experimental results demonstrate that the predicted ABP waveforms closely align with the actual waveforms, achieving a mean absolute error (MAE) of 1.78 ± 2.15 mmHg, a root mean square error (RMSE) of 2.79 mmHg, and an R-squared (R<span>\\\\(^{2}\\\\)</span>) of 0.98. The model meets the standards of the Association for the Advancement of Medical Instrumentation (AAMI), with MAEs of 2.94 ± 3.43 mmHg for systolic blood pressure (SBP) and 4.22 ± 5.18 mmHg for diastolic blood pressure (DBP). Under the British Hypertension Society (BHS) standards, the accuracy rates within 5 mmHg are 85.3% for DBP and 72.4% for SBP and exceed 97% within 15 mmHg.</p><h3>Conclusion</h3><p>The BiSTU Sequential Network exhibits significant potential for accurate, non-invasive prediction of arterial blood pressure. Its predictions closely match actual waveforms and comply with multiple clinical standards, indicating broad application prospects and contributing to the early diagnosis and monitoring of cardiovascular diseases.</p></div>\",\"PeriodicalId\":7986,\"journal\":{\"name\":\"Annals of Biomedical Engineering\",\"volume\":\"53 10\",\"pages\":\"2562 - 2579\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10439-025-03787-y\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10439-025-03787-y","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

目的:心血管疾病(CVD)仍然是一个全球性的健康问题,动脉血压(ABP)波形提供了关键的生理数据,有助于CVD的早期诊断。然而,现有的脉冲波形评估方法不足以准确预测ABP,本研究旨在提出一种新的U-net联合网络架构——BiSTU序列网络,以预测高质量的ABP波形。方法:设计的BiSTU序列网络集成了双向长短期记忆(Bi-LSTM)模型(用于捕获时间依赖性)、具有多头注意机制的Transformer模型(用于提取细节特征)和用于多尺度特征提取的MultiRes卷积块注意模块U-Net (MCBAMU-Net)。该模型使用来自942名ICU患者的12,000份生命体征记录进行训练。结果:实验结果表明,预测ABP波形与实际波形吻合较好,平均绝对误差(MAE)为1.78±2.15 mmHg,均方根误差(RMSE)为2.79 mmHg, R平方(r2)为0.98。该模型符合美国医疗器械进步协会(AAMI)的标准,收缩压MAEs为2.94±3.43 mmHg,舒张压MAEs为4.22±5.18 mmHg。根据英国高血压协会(BHS)的标准,5毫米汞柱范围内舒张血压的准确率为85.3%,收缩压的准确率为72.4%,15毫米汞柱范围内的准确率超过97%。结论:BiSTU序列网络显示出准确、无创预测动脉血压的巨大潜力。其预测结果与实际波形吻合密切,符合多种临床标准,具有广阔的应用前景,有助于心血管疾病的早期诊断和监测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Stage BiSTU Network Combining BiLSTM and Transformer for ABP Waveform Prediction from PPG Signals

Purpose

Cardiovascular disease (CVD) remains a global health issue, and arterial blood pressure (ABP) waveforms provide critical physiological data that aid in the early diagnosis of CVD. However, existing pulse waveform evaluation methods are insufficient for accurately predicting ABP. This study aims to propose a novel U-net joint network architecture, the BiSTU Sequential Network, to predict high-quality ABP waveforms.

Methods

The designed BiSTU Sequential Network integrates a Bidirectional Long Short-Term Memory (Bi-LSTM) model to capture temporal dependencies, a Transformer model with multi-head attention mechanisms to extract detailed features, and a MultiRes Convolutional Block Attention Module U-Net (MCBAMU-Net) for multi-scale feature extraction. The model was trained using 12,000 vital sign records from 942 ICU patients.

Results

Experimental results demonstrate that the predicted ABP waveforms closely align with the actual waveforms, achieving a mean absolute error (MAE) of 1.78 ± 2.15 mmHg, a root mean square error (RMSE) of 2.79 mmHg, and an R-squared (R\(^{2}\)) of 0.98. The model meets the standards of the Association for the Advancement of Medical Instrumentation (AAMI), with MAEs of 2.94 ± 3.43 mmHg for systolic blood pressure (SBP) and 4.22 ± 5.18 mmHg for diastolic blood pressure (DBP). Under the British Hypertension Society (BHS) standards, the accuracy rates within 5 mmHg are 85.3% for DBP and 72.4% for SBP and exceed 97% within 15 mmHg.

Conclusion

The BiSTU Sequential Network exhibits significant potential for accurate, non-invasive prediction of arterial blood pressure. Its predictions closely match actual waveforms and comply with multiple clinical standards, indicating broad application prospects and contributing to the early diagnosis and monitoring of cardiovascular diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Biomedical Engineering
Annals of Biomedical Engineering 工程技术-工程:生物医学
CiteScore
7.50
自引率
15.80%
发文量
212
审稿时长
3 months
期刊介绍: Annals of Biomedical Engineering is an official journal of the Biomedical Engineering Society, publishing original articles in the major fields of bioengineering and biomedical engineering. The Annals is an interdisciplinary and international journal with the aim to highlight integrated approaches to the solutions of biological and biomedical problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信