玻尔兹曼方程受压力和矩限约束的正则性。

IF 2.6 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Xavier Fernández-Real, Xavier Ros-Oton, Marvin Weidner
{"title":"玻尔兹曼方程受压力和矩限约束的正则性。","authors":"Xavier Fernández-Real,&nbsp;Xavier Ros-Oton,&nbsp;Marvin Weidner","doi":"10.1007/s00220-025-05356-9","DOIUrl":null,"url":null,"abstract":"<div><p>We prove that solutions to the Boltzmann equation without cut-off satisfying pointwise bounds on some observables (mass, pressure, and suitable moments) enjoy a uniform bound in <span>\\(L^\\infty \\)</span> in the case of hard potentials. As a consequence, we derive <span>\\(C^{\\infty }\\)</span> estimates and decay estimates for all derivatives, conditional to these macroscopic bounds. Our <span>\\(L^\\infty \\)</span> estimates are uniform in the limit <span>\\(s \\nearrow 1\\)</span> and hence we recover the same results also for the Landau equation.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 8","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12222422/pdf/","citationCount":"0","resultStr":"{\"title\":\"Regularity for the Boltzmann Equation Conditional to Pressure and Moment Bounds\",\"authors\":\"Xavier Fernández-Real,&nbsp;Xavier Ros-Oton,&nbsp;Marvin Weidner\",\"doi\":\"10.1007/s00220-025-05356-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove that solutions to the Boltzmann equation without cut-off satisfying pointwise bounds on some observables (mass, pressure, and suitable moments) enjoy a uniform bound in <span>\\\\(L^\\\\infty \\\\)</span> in the case of hard potentials. As a consequence, we derive <span>\\\\(C^{\\\\infty }\\\\)</span> estimates and decay estimates for all derivatives, conditional to these macroscopic bounds. Our <span>\\\\(L^\\\\infty \\\\)</span> estimates are uniform in the limit <span>\\\\(s \\\\nearrow 1\\\\)</span> and hence we recover the same results also for the Landau equation.</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":\"406 8\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12222422/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-025-05356-9\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05356-9","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了在硬势的情况下,无截断的玻尔兹曼方程的解在某些观测值(质量、压力和合适矩)上满足点界时在L∞上具有一致界。因此,我们导出了所有导数的C∞估计和衰减估计,条件是这些宏观边界。我们的L∞估计在极限s × 1下是一致的,因此我们对朗道方程也恢复了相同的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regularity for the Boltzmann Equation Conditional to Pressure and Moment Bounds

We prove that solutions to the Boltzmann equation without cut-off satisfying pointwise bounds on some observables (mass, pressure, and suitable moments) enjoy a uniform bound in \(L^\infty \) in the case of hard potentials. As a consequence, we derive \(C^{\infty }\) estimates and decay estimates for all derivatives, conditional to these macroscopic bounds. Our \(L^\infty \) estimates are uniform in the limit \(s \nearrow 1\) and hence we recover the same results also for the Landau equation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信