轴向定向电磁碳纤维的限静电纺丝可调谐宽带电磁波吸收。

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Lei Wang, Mengqiu Huang, Yuetong Qian, RuiXuan Zhang, Wenbin You, Renchao Che
{"title":"轴向定向电磁碳纤维的限静电纺丝可调谐宽带电磁波吸收。","authors":"Lei Wang, Mengqiu Huang, Yuetong Qian, RuiXuan Zhang, Wenbin You, Renchao Che","doi":"10.1002/smtd.202500886","DOIUrl":null,"url":null,"abstract":"<p><p>Wide-frequency response in electromagnetic (EM) wave absorption materials usually depends on the composition ratio or macro-structure design. How to achieve axial orientation arrangement of magnetic nanoparticles in 1D carbon fibers faces huge challenges. In this work, axially oriented magnetic-carbon (Fe@NC) fibers are fabricated via confined electrospinning and pyrolysis, where spindle-shaped Fe nanoparticles (NPs) are in situ confined within carbonized PAN fibers with their axial direction aligned along the fiber orientation, forming a synergistic heterostructure. Aligned Fe@NC fibers enhanced anisotropy and assembled 3D fiber network boosted electron transfer and magnetic coupling, co-contributing to the energy dissipation. And the micromagnetic simulations revealed the evolution of magnetic domains with increasing magnetic Fe NPs. Benefiting from the dielectric-magnetic synergy, the optimized Fe@NC composite achieved exceptional broadband EM wave absorption, exhibiting an ultra-wide effective absorption bandwidth (EAB) of 7.1 GHz (covering the entire Ku-band) at a thin thickness of 1.7 mm. This work provides a novel strategy for designing wide-frequency absorbers and advances the controllable synthesis of 1D axially oriented magnetic-dielectric functional composites.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2500886"},"PeriodicalIF":10.7000,"publicationDate":"2025-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Axially Oriented Magnetic-Carbon Fibers via Confined Electrospinning for Tunable Broadband Electromagnetic Wave Absorption.\",\"authors\":\"Lei Wang, Mengqiu Huang, Yuetong Qian, RuiXuan Zhang, Wenbin You, Renchao Che\",\"doi\":\"10.1002/smtd.202500886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Wide-frequency response in electromagnetic (EM) wave absorption materials usually depends on the composition ratio or macro-structure design. How to achieve axial orientation arrangement of magnetic nanoparticles in 1D carbon fibers faces huge challenges. In this work, axially oriented magnetic-carbon (Fe@NC) fibers are fabricated via confined electrospinning and pyrolysis, where spindle-shaped Fe nanoparticles (NPs) are in situ confined within carbonized PAN fibers with their axial direction aligned along the fiber orientation, forming a synergistic heterostructure. Aligned Fe@NC fibers enhanced anisotropy and assembled 3D fiber network boosted electron transfer and magnetic coupling, co-contributing to the energy dissipation. And the micromagnetic simulations revealed the evolution of magnetic domains with increasing magnetic Fe NPs. Benefiting from the dielectric-magnetic synergy, the optimized Fe@NC composite achieved exceptional broadband EM wave absorption, exhibiting an ultra-wide effective absorption bandwidth (EAB) of 7.1 GHz (covering the entire Ku-band) at a thin thickness of 1.7 mm. This work provides a novel strategy for designing wide-frequency absorbers and advances the controllable synthesis of 1D axially oriented magnetic-dielectric functional composites.</p>\",\"PeriodicalId\":229,\"journal\":{\"name\":\"Small Methods\",\"volume\":\" \",\"pages\":\"e2500886\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Methods\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smtd.202500886\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202500886","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

电磁波吸收材料的宽频响应通常取决于材料的组成比或宏观结构设计。如何在一维碳纤维中实现磁性纳米颗粒的轴向排列是一个巨大的挑战。在这项工作中,轴向磁碳(Fe@NC)纤维是通过密闭静电纺丝和热解制备的,其中纺锤形铁纳米颗粒(NPs)被原位限制在碳化PAN纤维中,其轴向沿纤维取向排列,形成协同异质结构。排列的Fe@NC光纤增强了各向异性,组装的3D光纤网络促进了电子转移和磁耦合,共同促进了能量耗散。微磁模拟揭示了随着磁性铁NPs的增加,磁畴的演化过程。得益于介质-磁协同作用,优化后的Fe@NC复合材料实现了卓越的宽带电磁波吸收,在薄厚度为1.7 mm的情况下,显示出7.1 GHz的超宽有效吸收带宽(EAB)(覆盖整个ku波段)。本研究为宽频吸收材料的设计提供了一种新的策略,并推进了一维轴向磁介电功能复合材料的可控合成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Axially Oriented Magnetic-Carbon Fibers via Confined Electrospinning for Tunable Broadband Electromagnetic Wave Absorption.

Wide-frequency response in electromagnetic (EM) wave absorption materials usually depends on the composition ratio or macro-structure design. How to achieve axial orientation arrangement of magnetic nanoparticles in 1D carbon fibers faces huge challenges. In this work, axially oriented magnetic-carbon (Fe@NC) fibers are fabricated via confined electrospinning and pyrolysis, where spindle-shaped Fe nanoparticles (NPs) are in situ confined within carbonized PAN fibers with their axial direction aligned along the fiber orientation, forming a synergistic heterostructure. Aligned Fe@NC fibers enhanced anisotropy and assembled 3D fiber network boosted electron transfer and magnetic coupling, co-contributing to the energy dissipation. And the micromagnetic simulations revealed the evolution of magnetic domains with increasing magnetic Fe NPs. Benefiting from the dielectric-magnetic synergy, the optimized Fe@NC composite achieved exceptional broadband EM wave absorption, exhibiting an ultra-wide effective absorption bandwidth (EAB) of 7.1 GHz (covering the entire Ku-band) at a thin thickness of 1.7 mm. This work provides a novel strategy for designing wide-frequency absorbers and advances the controllable synthesis of 1D axially oriented magnetic-dielectric functional composites.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信