甲基取代对高性能有机太阳能电池重组能量的精确调制。

IF 14.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Li Chen, Chaoyue Zhao, Joshua Yuk Lin Lai, Rongkun Zhou, Aleksandr Sergeev, Kam Sing Wong, Huawei Hu, Zilong Zheng, Han Yu, Sai Ho Pun, Guangye Zhang, He Yan
{"title":"甲基取代对高性能有机太阳能电池重组能量的精确调制。","authors":"Li Chen,&nbsp;Chaoyue Zhao,&nbsp;Joshua Yuk Lin Lai,&nbsp;Rongkun Zhou,&nbsp;Aleksandr Sergeev,&nbsp;Kam Sing Wong,&nbsp;Huawei Hu,&nbsp;Zilong Zheng,&nbsp;Han Yu,&nbsp;Sai Ho Pun,&nbsp;Guangye Zhang,&nbsp;He Yan","doi":"10.1002/advs.202505143","DOIUrl":null,"url":null,"abstract":"<p>Efficient charge transport and minimized energy loss are critical for advancing the performance of organic solar cells (OSCs). In this study, a series of quinoxaline-based electron acceptors, BQx-MeF, BQx-MeCl, and BQx-MeBr, featuring methyl and halogen substitutions is designed and synthesized to systematically modulate reorganization energy (λ) and film morphology. Quantum chemical calculations confirmed that methylation effectively reduces λ by limiting structural relaxation, leading to suppressed non-radiative recombination energy loss (Δ<i>E</i><sub>nr</sub>) and improved charge transport. Among the synthesized materials, BQx-MeCl exhibited the lowest energy loss and the most balanced electron and hole mobilities, resulting in a superior power conversion efficiency (PCE) of 19.2% in a binary device. In optimized ternary OSCs, BQx-MeCl further reached a remarkable PCE of 19.6%. This enhancement is attributed to optimized molecular stacking, improved film morphology, and reduced trap-assisted recombination. These findings highlight the pivotal role of molecular design in lowering reorganization energy to minimize energy losses and maximize charge collection, offering an effective strategy for the development of high-efficiency OSCs.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":"12 31","pages":""},"PeriodicalIF":14.1000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202505143","citationCount":"0","resultStr":"{\"title\":\"Precise Modulation of Reorganization Energy through Methyl Substitution for High Performance Organic Solar Cells\",\"authors\":\"Li Chen,&nbsp;Chaoyue Zhao,&nbsp;Joshua Yuk Lin Lai,&nbsp;Rongkun Zhou,&nbsp;Aleksandr Sergeev,&nbsp;Kam Sing Wong,&nbsp;Huawei Hu,&nbsp;Zilong Zheng,&nbsp;Han Yu,&nbsp;Sai Ho Pun,&nbsp;Guangye Zhang,&nbsp;He Yan\",\"doi\":\"10.1002/advs.202505143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Efficient charge transport and minimized energy loss are critical for advancing the performance of organic solar cells (OSCs). In this study, a series of quinoxaline-based electron acceptors, BQx-MeF, BQx-MeCl, and BQx-MeBr, featuring methyl and halogen substitutions is designed and synthesized to systematically modulate reorganization energy (λ) and film morphology. Quantum chemical calculations confirmed that methylation effectively reduces λ by limiting structural relaxation, leading to suppressed non-radiative recombination energy loss (Δ<i>E</i><sub>nr</sub>) and improved charge transport. Among the synthesized materials, BQx-MeCl exhibited the lowest energy loss and the most balanced electron and hole mobilities, resulting in a superior power conversion efficiency (PCE) of 19.2% in a binary device. In optimized ternary OSCs, BQx-MeCl further reached a remarkable PCE of 19.6%. This enhancement is attributed to optimized molecular stacking, improved film morphology, and reduced trap-assisted recombination. These findings highlight the pivotal role of molecular design in lowering reorganization energy to minimize energy losses and maximize charge collection, offering an effective strategy for the development of high-efficiency OSCs.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\"12 31\",\"pages\":\"\"},\"PeriodicalIF\":14.1000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202505143\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/advs.202505143\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/advs.202505143","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

高效的电荷传输和最小化的能量损失是提高有机太阳能电池性能的关键。本研究设计并合成了一系列喹诺啉基电子受体BQx-MeF、BQx-MeCl和BQx-MeBr,它们具有甲基取代和卤素取代的特点,可以系统地调节重组能(λ)和膜形态。量子化学计算证实,甲基化通过限制结构弛豫有效地降低λ,从而抑制非辐射复合能量损失(ΔEnr)和改善电荷输运。在合成的材料中,BQx-MeCl的能量损失最低,电子和空穴迁移率最平衡,在二元器件中具有19.2%的优异功率转换效率(PCE)。在优化后的三元osc中,BQx-MeCl的PCE进一步达到了19.6%。这种增强归因于优化的分子堆叠,改善的膜形态,减少陷阱辅助重组。这些发现强调了分子设计在降低重组能以减少能量损失和最大化电荷收集方面的关键作用,为开发高效的OSCs提供了有效的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Precise Modulation of Reorganization Energy through Methyl Substitution for High Performance Organic Solar Cells

Precise Modulation of Reorganization Energy through Methyl Substitution for High Performance Organic Solar Cells

Efficient charge transport and minimized energy loss are critical for advancing the performance of organic solar cells (OSCs). In this study, a series of quinoxaline-based electron acceptors, BQx-MeF, BQx-MeCl, and BQx-MeBr, featuring methyl and halogen substitutions is designed and synthesized to systematically modulate reorganization energy (λ) and film morphology. Quantum chemical calculations confirmed that methylation effectively reduces λ by limiting structural relaxation, leading to suppressed non-radiative recombination energy loss (ΔEnr) and improved charge transport. Among the synthesized materials, BQx-MeCl exhibited the lowest energy loss and the most balanced electron and hole mobilities, resulting in a superior power conversion efficiency (PCE) of 19.2% in a binary device. In optimized ternary OSCs, BQx-MeCl further reached a remarkable PCE of 19.6%. This enhancement is attributed to optimized molecular stacking, improved film morphology, and reduced trap-assisted recombination. These findings highlight the pivotal role of molecular design in lowering reorganization energy to minimize energy losses and maximize charge collection, offering an effective strategy for the development of high-efficiency OSCs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信