{"title":"支架刚度通过细胞牵引力影响少突胶质细胞增殖。","authors":"Haruki Watanabe, Akiko Uyeda, Lili Quan, Shogo Iwai, Ze Zhang, Shinjiro Umezu, Tatsunori Suzuki, Rieko Muramatsu","doi":"10.1039/d5bm00689a","DOIUrl":null,"url":null,"abstract":"<p><p>Drugs that promote the regeneration of the central nervous system (CNS) have motivated the development of a method to assess the functions of CNS cells, such as oligodendrocytes, which sustain the homeostasis of neuronal networks. In this study, we evaluated the effects of scaffold stiffness on the phenotypic and transcriptomic levels of MO3.13 cells, a human oligodendrocyte lineage cell line. Cells cultured on gels of varying stiffness exhibited different growth potentials. RNA sequencing detected differences in the expression of genes associated with cell proliferation and actin cytoskeleton polymerization. Treatment with actin polymerization inhibitor prevented changes in the growth potential, which were mediated by cell traction forces. These results suggest that scaffold stiffness-transduced biological signaling is an important factor to consider when assessing CNS cell function.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scaffold stiffness affects oligodendrocyte proliferation <i>via</i> cell traction forces.\",\"authors\":\"Haruki Watanabe, Akiko Uyeda, Lili Quan, Shogo Iwai, Ze Zhang, Shinjiro Umezu, Tatsunori Suzuki, Rieko Muramatsu\",\"doi\":\"10.1039/d5bm00689a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Drugs that promote the regeneration of the central nervous system (CNS) have motivated the development of a method to assess the functions of CNS cells, such as oligodendrocytes, which sustain the homeostasis of neuronal networks. In this study, we evaluated the effects of scaffold stiffness on the phenotypic and transcriptomic levels of MO3.13 cells, a human oligodendrocyte lineage cell line. Cells cultured on gels of varying stiffness exhibited different growth potentials. RNA sequencing detected differences in the expression of genes associated with cell proliferation and actin cytoskeleton polymerization. Treatment with actin polymerization inhibitor prevented changes in the growth potential, which were mediated by cell traction forces. These results suggest that scaffold stiffness-transduced biological signaling is an important factor to consider when assessing CNS cell function.</p>\",\"PeriodicalId\":65,\"journal\":{\"name\":\"Biomaterials Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomaterials Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1039/d5bm00689a\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1039/d5bm00689a","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Scaffold stiffness affects oligodendrocyte proliferation via cell traction forces.
Drugs that promote the regeneration of the central nervous system (CNS) have motivated the development of a method to assess the functions of CNS cells, such as oligodendrocytes, which sustain the homeostasis of neuronal networks. In this study, we evaluated the effects of scaffold stiffness on the phenotypic and transcriptomic levels of MO3.13 cells, a human oligodendrocyte lineage cell line. Cells cultured on gels of varying stiffness exhibited different growth potentials. RNA sequencing detected differences in the expression of genes associated with cell proliferation and actin cytoskeleton polymerization. Treatment with actin polymerization inhibitor prevented changes in the growth potential, which were mediated by cell traction forces. These results suggest that scaffold stiffness-transduced biological signaling is an important factor to consider when assessing CNS cell function.
期刊介绍:
Biomaterials Science is an international high impact journal exploring the science of biomaterials and their translation towards clinical use. Its scope encompasses new concepts in biomaterials design, studies into the interaction of biomaterials with the body, and the use of materials to answer fundamental biological questions.