机器学习和DIA蛋白质组学揭示肺炎克雷伯菌碳青霉烯耐药机制的新见解。

IF 3.6 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Journal of Proteome Research Pub Date : 2025-08-01 Epub Date: 2025-07-07 DOI:10.1021/acs.jproteome.5c00142
Guibin Wang, Ling Cao, Lingli Lian, Yuqian Wang, Juanqi Lian, Ziqiu Liu, Wenzhe Chen, Meichao Ji, Lanqing Gong, Lishan Zhang, Liping Li, Xiangmin Lin
{"title":"机器学习和DIA蛋白质组学揭示肺炎克雷伯菌碳青霉烯耐药机制的新见解。","authors":"Guibin Wang, Ling Cao, Lingli Lian, Yuqian Wang, Juanqi Lian, Ziqiu Liu, Wenzhe Chen, Meichao Ji, Lanqing Gong, Lishan Zhang, Liping Li, Xiangmin Lin","doi":"10.1021/acs.jproteome.5c00142","DOIUrl":null,"url":null,"abstract":"<p><p>The emergence of Carbapenem-resistant <i>Klebsiella pneumoniae</i> (CRKP) represents a major public health concern, primarily driven by its ability to evade a wide range of antibiotics. Despite extensive genomic studies, proteomic insights into antibiotic resistance mechanisms remain scarce. Here, we employed a Data-Independent Acquisition (DIA)-based quantitative proteomics approach to investigate proteomic differences between 78 CRKP and 18 Carbapenem-sensitive <i>K. pneumoniae</i> (CSKP) clinical isolates. A total of 3380 proteins were identified, with 946 showing significant differential expression. CRKP isolates exhibited increased expression of efflux pumps, beta-lactamases, and transcriptional regulators, while proteins associated with transport were enriched in CSKP isolates. To validate our findings, a quantitative proteomics analysis in an independent cohort of 10 CRKP and 11 CSKP isolates was performed. The key biomarkers identified via machine learning in the discovery cohort, including aldehyde dehydrogenase (KPN_03361), acyltransferase (KPN_02072), uncharacterized protein (YjeJ), plasmid partition protein B (ParaB), HTH-type transcriptional activator (RhaR), and beta-lactamase (Bla), were evaluated. They collectively achieved AUC > 0.7 in the validation cohort, confirming their discriminatory capacity as diagnostic markers. These findings provide novel insights into the molecular mechanisms of antibiotic resistance and identify promising biomarkers for diagnosing carbapenem-resistant <i>K. pneumoniae</i>, offering potential avenues for therapeutic intervention.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":" ","pages":"4002-4014"},"PeriodicalIF":3.6000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning and DIA Proteomics Reveal New Insights into Carbapenem Resistance Mechanisms in <i>Klebsiella pneumoniae</i>.\",\"authors\":\"Guibin Wang, Ling Cao, Lingli Lian, Yuqian Wang, Juanqi Lian, Ziqiu Liu, Wenzhe Chen, Meichao Ji, Lanqing Gong, Lishan Zhang, Liping Li, Xiangmin Lin\",\"doi\":\"10.1021/acs.jproteome.5c00142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The emergence of Carbapenem-resistant <i>Klebsiella pneumoniae</i> (CRKP) represents a major public health concern, primarily driven by its ability to evade a wide range of antibiotics. Despite extensive genomic studies, proteomic insights into antibiotic resistance mechanisms remain scarce. Here, we employed a Data-Independent Acquisition (DIA)-based quantitative proteomics approach to investigate proteomic differences between 78 CRKP and 18 Carbapenem-sensitive <i>K. pneumoniae</i> (CSKP) clinical isolates. A total of 3380 proteins were identified, with 946 showing significant differential expression. CRKP isolates exhibited increased expression of efflux pumps, beta-lactamases, and transcriptional regulators, while proteins associated with transport were enriched in CSKP isolates. To validate our findings, a quantitative proteomics analysis in an independent cohort of 10 CRKP and 11 CSKP isolates was performed. The key biomarkers identified via machine learning in the discovery cohort, including aldehyde dehydrogenase (KPN_03361), acyltransferase (KPN_02072), uncharacterized protein (YjeJ), plasmid partition protein B (ParaB), HTH-type transcriptional activator (RhaR), and beta-lactamase (Bla), were evaluated. They collectively achieved AUC > 0.7 in the validation cohort, confirming their discriminatory capacity as diagnostic markers. These findings provide novel insights into the molecular mechanisms of antibiotic resistance and identify promising biomarkers for diagnosing carbapenem-resistant <i>K. pneumoniae</i>, offering potential avenues for therapeutic intervention.</p>\",\"PeriodicalId\":48,\"journal\":{\"name\":\"Journal of Proteome Research\",\"volume\":\" \",\"pages\":\"4002-4014\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Proteome Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jproteome.5c00142\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Proteome Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acs.jproteome.5c00142","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

耐碳青霉烯肺炎克雷伯菌(CRKP)的出现是一个主要的公共卫生问题,主要是由于它能够逃避多种抗生素。尽管进行了广泛的基因组研究,但对抗生素耐药性机制的蛋白质组学见解仍然很少。在这里,我们采用基于数据独立获取(DIA)的定量蛋白质组学方法来研究78个CRKP和18个碳青霉烯敏感肺炎克雷伯菌(CSKP)临床分离株的蛋白质组学差异。共鉴定出3380个蛋白,其中946个存在显著差异表达。CRKP分离株外排泵、β -内酰胺酶和转录调节因子的表达增加,而与运输相关的蛋白质在CSKP分离株中富集。为了验证我们的发现,对10个CRKP和11个CSKP分离株进行了独立队列的定量蛋白质组学分析。通过机器学习鉴定出的关键生物标志物包括醛脱氢酶(KPN_03361)、酰基转移酶(KPN_02072)、未表征蛋白(YjeJ)、质粒分割蛋白B (ParaB)、hth型转录激活因子(RhaR)和β -内酰胺酶(Bla)。在验证队列中,他们的总体AUC达到了>.7,证实了他们作为诊断标记的区分能力。这些发现为抗生素耐药性的分子机制提供了新的见解,并确定了诊断耐碳青霉烯肺炎克雷伯菌的有希望的生物标志物,为治疗干预提供了潜在的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning and DIA Proteomics Reveal New Insights into Carbapenem Resistance Mechanisms in Klebsiella pneumoniae.

The emergence of Carbapenem-resistant Klebsiella pneumoniae (CRKP) represents a major public health concern, primarily driven by its ability to evade a wide range of antibiotics. Despite extensive genomic studies, proteomic insights into antibiotic resistance mechanisms remain scarce. Here, we employed a Data-Independent Acquisition (DIA)-based quantitative proteomics approach to investigate proteomic differences between 78 CRKP and 18 Carbapenem-sensitive K. pneumoniae (CSKP) clinical isolates. A total of 3380 proteins were identified, with 946 showing significant differential expression. CRKP isolates exhibited increased expression of efflux pumps, beta-lactamases, and transcriptional regulators, while proteins associated with transport were enriched in CSKP isolates. To validate our findings, a quantitative proteomics analysis in an independent cohort of 10 CRKP and 11 CSKP isolates was performed. The key biomarkers identified via machine learning in the discovery cohort, including aldehyde dehydrogenase (KPN_03361), acyltransferase (KPN_02072), uncharacterized protein (YjeJ), plasmid partition protein B (ParaB), HTH-type transcriptional activator (RhaR), and beta-lactamase (Bla), were evaluated. They collectively achieved AUC > 0.7 in the validation cohort, confirming their discriminatory capacity as diagnostic markers. These findings provide novel insights into the molecular mechanisms of antibiotic resistance and identify promising biomarkers for diagnosing carbapenem-resistant K. pneumoniae, offering potential avenues for therapeutic intervention.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Proteome Research
Journal of Proteome Research 生物-生化研究方法
CiteScore
9.00
自引率
4.50%
发文量
251
审稿时长
3 months
期刊介绍: Journal of Proteome Research publishes content encompassing all aspects of global protein analysis and function, including the dynamic aspects of genomics, spatio-temporal proteomics, metabonomics and metabolomics, clinical and agricultural proteomics, as well as advances in methodology including bioinformatics. The theme and emphasis is on a multidisciplinary approach to the life sciences through the synergy between the different types of "omics".
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信