控制糖胺聚糖糖共聚物模拟物的磺化密度可提高抗病毒活性并降低抗凝活性。

IF 5.4 2区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Miriam Hoffmann, Lorand Bonda, Ines Fels, Darisuran Anhlan, Eike Hrincius, Derik Hermsen, Stephan Ludwig, Mario Schelhaas*, Nicole L. Snyder* and Laura Hartmann*, 
{"title":"控制糖胺聚糖糖共聚物模拟物的磺化密度可提高抗病毒活性并降低抗凝活性。","authors":"Miriam Hoffmann,&nbsp;Lorand Bonda,&nbsp;Ines Fels,&nbsp;Darisuran Anhlan,&nbsp;Eike Hrincius,&nbsp;Derik Hermsen,&nbsp;Stephan Ludwig,&nbsp;Mario Schelhaas*,&nbsp;Nicole L. Snyder* and Laura Hartmann*,&nbsp;","doi":"10.1021/acs.biomac.5c00576","DOIUrl":null,"url":null,"abstract":"<p >Sulfated glycosaminoglycans (sGAGs) make up a class of cell-surface glycans known to mediate pathogen engagement. Glycopolymers mimicking sGAGs can reduce or prevent pathogen attachment. However, their high anticoagulant activity limits their biomedical applications. Here, we report the synthesis and evaluation of synthetic glycopolymers mimicking sGAGs with high antiviral activity but low anticoagulant activity. The key lies in the control of the density of carbohydrates presented along the polymeric backbone. This was accomplished via copolymerization of carbohydrate with noncarbohydrate monomers. We reveal that the polymer chain length affects inhibition of SARS-CoV-2 pseudovirus (PsV) and authentic virus infections, and that above a critical chain length, density of carbohydrate and sulfate groups can be reduced, maintaining high antiviral activity while minimizing anticoagulant activity. This demonstrates, for the first time, how specific structural parameters of glycopolymers can be used to maximize inhibition while minimizing anticoagulative properties unlocking the full potential of sGAG mimetics in fighting infections.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":"26 8","pages":"5169–5181"},"PeriodicalIF":5.4000,"publicationDate":"2025-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acs.biomac.5c00576","citationCount":"0","resultStr":"{\"title\":\"Controlling the Sulfation Density of Glycosaminoglycan Glycopolymer Mimetics Enables High Antiviral Activity against SARS-CoV-2 and Reduces Anticoagulant Activity\",\"authors\":\"Miriam Hoffmann,&nbsp;Lorand Bonda,&nbsp;Ines Fels,&nbsp;Darisuran Anhlan,&nbsp;Eike Hrincius,&nbsp;Derik Hermsen,&nbsp;Stephan Ludwig,&nbsp;Mario Schelhaas*,&nbsp;Nicole L. Snyder* and Laura Hartmann*,&nbsp;\",\"doi\":\"10.1021/acs.biomac.5c00576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Sulfated glycosaminoglycans (sGAGs) make up a class of cell-surface glycans known to mediate pathogen engagement. Glycopolymers mimicking sGAGs can reduce or prevent pathogen attachment. However, their high anticoagulant activity limits their biomedical applications. Here, we report the synthesis and evaluation of synthetic glycopolymers mimicking sGAGs with high antiviral activity but low anticoagulant activity. The key lies in the control of the density of carbohydrates presented along the polymeric backbone. This was accomplished via copolymerization of carbohydrate with noncarbohydrate monomers. We reveal that the polymer chain length affects inhibition of SARS-CoV-2 pseudovirus (PsV) and authentic virus infections, and that above a critical chain length, density of carbohydrate and sulfate groups can be reduced, maintaining high antiviral activity while minimizing anticoagulant activity. This demonstrates, for the first time, how specific structural parameters of glycopolymers can be used to maximize inhibition while minimizing anticoagulative properties unlocking the full potential of sGAG mimetics in fighting infections.</p>\",\"PeriodicalId\":30,\"journal\":{\"name\":\"Biomacromolecules\",\"volume\":\"26 8\",\"pages\":\"5169–5181\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acs.biomac.5c00576\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomacromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.biomac.5c00576\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.biomac.5c00576","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

磺化糖胺聚糖(sGAGs)构成一类已知介导病原体接合的细胞表面聚糖。模拟sGAGs的糖共聚物可以减少或防止病原体附着。然而,它们的高抗凝活性限制了它们在生物医学上的应用。本文报道了一种具有高抗病毒活性但低抗凝血活性的模拟sGAGs的合成糖共聚物的合成和评价。关键在于控制沿着聚合主链呈现的碳水化合物的密度。这是通过碳水化合物与非碳水化合物单体的共聚实现的。我们发现聚合物链长影响对SARS-CoV-2假病毒(PsV)和真病毒感染的抑制,并且在临界链长以上,碳水化合物和硫酸盐基团的密度可以降低,保持高抗病毒活性,同时最大限度地降低抗凝血活性。这首次证明了如何利用糖共聚物的特定结构参数来最大化抑制作用,同时最小化抗凝特性,从而释放sGAG模拟物在对抗感染方面的全部潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Controlling the Sulfation Density of Glycosaminoglycan Glycopolymer Mimetics Enables High Antiviral Activity against SARS-CoV-2 and Reduces Anticoagulant Activity

Sulfated glycosaminoglycans (sGAGs) make up a class of cell-surface glycans known to mediate pathogen engagement. Glycopolymers mimicking sGAGs can reduce or prevent pathogen attachment. However, their high anticoagulant activity limits their biomedical applications. Here, we report the synthesis and evaluation of synthetic glycopolymers mimicking sGAGs with high antiviral activity but low anticoagulant activity. The key lies in the control of the density of carbohydrates presented along the polymeric backbone. This was accomplished via copolymerization of carbohydrate with noncarbohydrate monomers. We reveal that the polymer chain length affects inhibition of SARS-CoV-2 pseudovirus (PsV) and authentic virus infections, and that above a critical chain length, density of carbohydrate and sulfate groups can be reduced, maintaining high antiviral activity while minimizing anticoagulant activity. This demonstrates, for the first time, how specific structural parameters of glycopolymers can be used to maximize inhibition while minimizing anticoagulative properties unlocking the full potential of sGAG mimetics in fighting infections.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomacromolecules
Biomacromolecules 化学-高分子科学
CiteScore
10.60
自引率
4.80%
发文量
417
审稿时长
1.6 months
期刊介绍: Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine. Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信