Miriam Hoffmann, Lorand Bonda, Ines Fels, Darisuran Anhlan, Eike Hrincius, Derik Hermsen, Stephan Ludwig, Mario Schelhaas*, Nicole L. Snyder* and Laura Hartmann*,
{"title":"控制糖胺聚糖糖共聚物模拟物的磺化密度可提高抗病毒活性并降低抗凝活性。","authors":"Miriam Hoffmann, Lorand Bonda, Ines Fels, Darisuran Anhlan, Eike Hrincius, Derik Hermsen, Stephan Ludwig, Mario Schelhaas*, Nicole L. Snyder* and Laura Hartmann*, ","doi":"10.1021/acs.biomac.5c00576","DOIUrl":null,"url":null,"abstract":"<p >Sulfated glycosaminoglycans (sGAGs) make up a class of cell-surface glycans known to mediate pathogen engagement. Glycopolymers mimicking sGAGs can reduce or prevent pathogen attachment. However, their high anticoagulant activity limits their biomedical applications. Here, we report the synthesis and evaluation of synthetic glycopolymers mimicking sGAGs with high antiviral activity but low anticoagulant activity. The key lies in the control of the density of carbohydrates presented along the polymeric backbone. This was accomplished via copolymerization of carbohydrate with noncarbohydrate monomers. We reveal that the polymer chain length affects inhibition of SARS-CoV-2 pseudovirus (PsV) and authentic virus infections, and that above a critical chain length, density of carbohydrate and sulfate groups can be reduced, maintaining high antiviral activity while minimizing anticoagulant activity. This demonstrates, for the first time, how specific structural parameters of glycopolymers can be used to maximize inhibition while minimizing anticoagulative properties unlocking the full potential of sGAG mimetics in fighting infections.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":"26 8","pages":"5169–5181"},"PeriodicalIF":5.4000,"publicationDate":"2025-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acs.biomac.5c00576","citationCount":"0","resultStr":"{\"title\":\"Controlling the Sulfation Density of Glycosaminoglycan Glycopolymer Mimetics Enables High Antiviral Activity against SARS-CoV-2 and Reduces Anticoagulant Activity\",\"authors\":\"Miriam Hoffmann, Lorand Bonda, Ines Fels, Darisuran Anhlan, Eike Hrincius, Derik Hermsen, Stephan Ludwig, Mario Schelhaas*, Nicole L. Snyder* and Laura Hartmann*, \",\"doi\":\"10.1021/acs.biomac.5c00576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Sulfated glycosaminoglycans (sGAGs) make up a class of cell-surface glycans known to mediate pathogen engagement. Glycopolymers mimicking sGAGs can reduce or prevent pathogen attachment. However, their high anticoagulant activity limits their biomedical applications. Here, we report the synthesis and evaluation of synthetic glycopolymers mimicking sGAGs with high antiviral activity but low anticoagulant activity. The key lies in the control of the density of carbohydrates presented along the polymeric backbone. This was accomplished via copolymerization of carbohydrate with noncarbohydrate monomers. We reveal that the polymer chain length affects inhibition of SARS-CoV-2 pseudovirus (PsV) and authentic virus infections, and that above a critical chain length, density of carbohydrate and sulfate groups can be reduced, maintaining high antiviral activity while minimizing anticoagulant activity. This demonstrates, for the first time, how specific structural parameters of glycopolymers can be used to maximize inhibition while minimizing anticoagulative properties unlocking the full potential of sGAG mimetics in fighting infections.</p>\",\"PeriodicalId\":30,\"journal\":{\"name\":\"Biomacromolecules\",\"volume\":\"26 8\",\"pages\":\"5169–5181\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acs.biomac.5c00576\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomacromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.biomac.5c00576\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.biomac.5c00576","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Controlling the Sulfation Density of Glycosaminoglycan Glycopolymer Mimetics Enables High Antiviral Activity against SARS-CoV-2 and Reduces Anticoagulant Activity
Sulfated glycosaminoglycans (sGAGs) make up a class of cell-surface glycans known to mediate pathogen engagement. Glycopolymers mimicking sGAGs can reduce or prevent pathogen attachment. However, their high anticoagulant activity limits their biomedical applications. Here, we report the synthesis and evaluation of synthetic glycopolymers mimicking sGAGs with high antiviral activity but low anticoagulant activity. The key lies in the control of the density of carbohydrates presented along the polymeric backbone. This was accomplished via copolymerization of carbohydrate with noncarbohydrate monomers. We reveal that the polymer chain length affects inhibition of SARS-CoV-2 pseudovirus (PsV) and authentic virus infections, and that above a critical chain length, density of carbohydrate and sulfate groups can be reduced, maintaining high antiviral activity while minimizing anticoagulant activity. This demonstrates, for the first time, how specific structural parameters of glycopolymers can be used to maximize inhibition while minimizing anticoagulative properties unlocking the full potential of sGAG mimetics in fighting infections.
期刊介绍:
Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine.
Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.