Fangzheng Tong, Xuyang Zhang, Xuanwen Wang, Siying Liu, Xiaoliang Cui, Yajie Zhou, Gang Li, Jun Zhang
{"title":"甲基丙烯酸丝素微针的数字光处理:增强透皮传递和皮肤再生的精密工程。","authors":"Fangzheng Tong, Xuyang Zhang, Xuanwen Wang, Siying Liu, Xiaoliang Cui, Yajie Zhou, Gang Li, Jun Zhang","doi":"10.1021/acsabm.5c00621","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the promising potential of digital light processing (DLP)─fabricated silk fibroin (SF) microneedles (MNs) in transdermal applications, their clinical translation faces two major challenges: insufficient manufacturing precision to achieve architectural resolution and inadequate mechanical strength to penetrate the epidermis effectively. To overcome these critical barriers, we developed a methacrylated silk fibroin (Sil-MA) bioink that combines high biocompatibility with enhanced printability. By systematically optimizing material formulation, printing parameters and MN geometry, we successfully fabricated DLP-printed Sil-MA MNs with precise architecture control and superior mechanical performance. These MNs demonstrated no cytotoxicity and enabled efficient transdermal delivery of three distinct dermatological therapeutics. Comprehensive in vitro and in vivo assessments indicated that the DLP-printed Sil-MA MNs also acted as mechanical stimulators, significantly promoting epidermal keratinocyte proliferation. This engineered platform offers a versatile strategy for developing multifunctional MN systems for therapeutic delivery and tissue engineering applications.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"6025-6039"},"PeriodicalIF":4.6000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Digital Light Processing of Methacrylated Silk Fibroin Microneedles: Precision Engineering for Enhanced Transdermal Delivery and Skin Regeneration.\",\"authors\":\"Fangzheng Tong, Xuyang Zhang, Xuanwen Wang, Siying Liu, Xiaoliang Cui, Yajie Zhou, Gang Li, Jun Zhang\",\"doi\":\"10.1021/acsabm.5c00621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Despite the promising potential of digital light processing (DLP)─fabricated silk fibroin (SF) microneedles (MNs) in transdermal applications, their clinical translation faces two major challenges: insufficient manufacturing precision to achieve architectural resolution and inadequate mechanical strength to penetrate the epidermis effectively. To overcome these critical barriers, we developed a methacrylated silk fibroin (Sil-MA) bioink that combines high biocompatibility with enhanced printability. By systematically optimizing material formulation, printing parameters and MN geometry, we successfully fabricated DLP-printed Sil-MA MNs with precise architecture control and superior mechanical performance. These MNs demonstrated no cytotoxicity and enabled efficient transdermal delivery of three distinct dermatological therapeutics. Comprehensive in vitro and in vivo assessments indicated that the DLP-printed Sil-MA MNs also acted as mechanical stimulators, significantly promoting epidermal keratinocyte proliferation. This engineered platform offers a versatile strategy for developing multifunctional MN systems for therapeutic delivery and tissue engineering applications.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\" \",\"pages\":\"6025-6039\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/acsabm.5c00621\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.5c00621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Digital Light Processing of Methacrylated Silk Fibroin Microneedles: Precision Engineering for Enhanced Transdermal Delivery and Skin Regeneration.
Despite the promising potential of digital light processing (DLP)─fabricated silk fibroin (SF) microneedles (MNs) in transdermal applications, their clinical translation faces two major challenges: insufficient manufacturing precision to achieve architectural resolution and inadequate mechanical strength to penetrate the epidermis effectively. To overcome these critical barriers, we developed a methacrylated silk fibroin (Sil-MA) bioink that combines high biocompatibility with enhanced printability. By systematically optimizing material formulation, printing parameters and MN geometry, we successfully fabricated DLP-printed Sil-MA MNs with precise architecture control and superior mechanical performance. These MNs demonstrated no cytotoxicity and enabled efficient transdermal delivery of three distinct dermatological therapeutics. Comprehensive in vitro and in vivo assessments indicated that the DLP-printed Sil-MA MNs also acted as mechanical stimulators, significantly promoting epidermal keratinocyte proliferation. This engineered platform offers a versatile strategy for developing multifunctional MN systems for therapeutic delivery and tissue engineering applications.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.