{"title":"无表面活性剂偶联聚合法制备聚吡咯及其衍生物纳米颗粒","authors":"Yuya Atsuta, Kazusa Takeuchi, Tomoki Sakuma, Koji Mitamura, Seiji Watase, Yuan Song, Tomoyasu Hirai, Yoshinobu Nakamura, Yuya Oaki, Syuji Fujii","doi":"10.1038/s41428-025-01026-8","DOIUrl":null,"url":null,"abstract":"Surfactant-free coupling polymerization of pyrrole (Py) and its derivatives, namely, N-methylpyrrole (MPy) and N-ethylpyrrole (EPy), was conducted using solid Fe(NO3)3 in the presence of an aqueous medium, resulting in aqueous dispersions of polymer particles. Dynamic light scattering studies revealed the production of colloidally stable polymer nanoparticles with diameters of 153–206 nm, 262–294 nm and 273–278 nm in aqueous media for the Py, MPy and EPy systems, respectively. The particle sizes of poly(N-methylpyrrole) (PMPy) and poly(N-ethylpyrrole) (PEPy) were larger than those of polypyrrole (PPy), which could be due to the greater hydrophobicity of MPy and EPy than Py. The particles could achieve colloidal stability through an electrostatic stabilization mechanism, as the polymerization process introduces cationic charges to the polymers via doping. Larger amounts of hydroxy and carbonyl groups were introduced into PMPy and PEPy because of the easier overoxidation of MPy and EPy due to their lower redox potentials than that of Py. Furthermore, the resulting particles could adsorb on oil‒water interfaces and work as effective Pickering-type emulsifiers. Suspension polymerization of vinyl monomer-in-water Pickering emulsions stabilized with PPy and PMPy nanoparticles resulted in the production of nanoparticle-coated polymer microparticles with diameters of 25 μm and 154 μm, respectively. “Polypyrrole, poly(N-methylpyrrole) and poly(N-ethylpyrrole) nanoparticles with surfactant-free clean surfaces were successfully synthesized via a vapor-phase coupling polymerization protocol. The particles could achieve colloidal stability through an electrostatic stabilization mechanism, as the polymerization process introduces cationic charges to the polymers via doping. The particles could adsorb on oil‒water interfaces and work as effective Pickering-type emulsifiers. Suspension polymerization of vinyl monomer-in-water Pickering emulsions stabilized with the nanoparticles resulted in the production of nanoparticle-coated polymer microparticles.”","PeriodicalId":20302,"journal":{"name":"Polymer Journal","volume":"57 7","pages":"723-735"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of polypyrrole and its derivative nanoparticles via a surfactant-free coupling polymerization protocol\",\"authors\":\"Yuya Atsuta, Kazusa Takeuchi, Tomoki Sakuma, Koji Mitamura, Seiji Watase, Yuan Song, Tomoyasu Hirai, Yoshinobu Nakamura, Yuya Oaki, Syuji Fujii\",\"doi\":\"10.1038/s41428-025-01026-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Surfactant-free coupling polymerization of pyrrole (Py) and its derivatives, namely, N-methylpyrrole (MPy) and N-ethylpyrrole (EPy), was conducted using solid Fe(NO3)3 in the presence of an aqueous medium, resulting in aqueous dispersions of polymer particles. Dynamic light scattering studies revealed the production of colloidally stable polymer nanoparticles with diameters of 153–206 nm, 262–294 nm and 273–278 nm in aqueous media for the Py, MPy and EPy systems, respectively. The particle sizes of poly(N-methylpyrrole) (PMPy) and poly(N-ethylpyrrole) (PEPy) were larger than those of polypyrrole (PPy), which could be due to the greater hydrophobicity of MPy and EPy than Py. The particles could achieve colloidal stability through an electrostatic stabilization mechanism, as the polymerization process introduces cationic charges to the polymers via doping. Larger amounts of hydroxy and carbonyl groups were introduced into PMPy and PEPy because of the easier overoxidation of MPy and EPy due to their lower redox potentials than that of Py. Furthermore, the resulting particles could adsorb on oil‒water interfaces and work as effective Pickering-type emulsifiers. Suspension polymerization of vinyl monomer-in-water Pickering emulsions stabilized with PPy and PMPy nanoparticles resulted in the production of nanoparticle-coated polymer microparticles with diameters of 25 μm and 154 μm, respectively. “Polypyrrole, poly(N-methylpyrrole) and poly(N-ethylpyrrole) nanoparticles with surfactant-free clean surfaces were successfully synthesized via a vapor-phase coupling polymerization protocol. The particles could achieve colloidal stability through an electrostatic stabilization mechanism, as the polymerization process introduces cationic charges to the polymers via doping. The particles could adsorb on oil‒water interfaces and work as effective Pickering-type emulsifiers. Suspension polymerization of vinyl monomer-in-water Pickering emulsions stabilized with the nanoparticles resulted in the production of nanoparticle-coated polymer microparticles.”\",\"PeriodicalId\":20302,\"journal\":{\"name\":\"Polymer Journal\",\"volume\":\"57 7\",\"pages\":\"723-735\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Journal\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.nature.com/articles/s41428-025-01026-8\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s41428-025-01026-8","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Synthesis of polypyrrole and its derivative nanoparticles via a surfactant-free coupling polymerization protocol
Surfactant-free coupling polymerization of pyrrole (Py) and its derivatives, namely, N-methylpyrrole (MPy) and N-ethylpyrrole (EPy), was conducted using solid Fe(NO3)3 in the presence of an aqueous medium, resulting in aqueous dispersions of polymer particles. Dynamic light scattering studies revealed the production of colloidally stable polymer nanoparticles with diameters of 153–206 nm, 262–294 nm and 273–278 nm in aqueous media for the Py, MPy and EPy systems, respectively. The particle sizes of poly(N-methylpyrrole) (PMPy) and poly(N-ethylpyrrole) (PEPy) were larger than those of polypyrrole (PPy), which could be due to the greater hydrophobicity of MPy and EPy than Py. The particles could achieve colloidal stability through an electrostatic stabilization mechanism, as the polymerization process introduces cationic charges to the polymers via doping. Larger amounts of hydroxy and carbonyl groups were introduced into PMPy and PEPy because of the easier overoxidation of MPy and EPy due to their lower redox potentials than that of Py. Furthermore, the resulting particles could adsorb on oil‒water interfaces and work as effective Pickering-type emulsifiers. Suspension polymerization of vinyl monomer-in-water Pickering emulsions stabilized with PPy and PMPy nanoparticles resulted in the production of nanoparticle-coated polymer microparticles with diameters of 25 μm and 154 μm, respectively. “Polypyrrole, poly(N-methylpyrrole) and poly(N-ethylpyrrole) nanoparticles with surfactant-free clean surfaces were successfully synthesized via a vapor-phase coupling polymerization protocol. The particles could achieve colloidal stability through an electrostatic stabilization mechanism, as the polymerization process introduces cationic charges to the polymers via doping. The particles could adsorb on oil‒water interfaces and work as effective Pickering-type emulsifiers. Suspension polymerization of vinyl monomer-in-water Pickering emulsions stabilized with the nanoparticles resulted in the production of nanoparticle-coated polymer microparticles.”
期刊介绍:
Polymer Journal promotes research from all aspects of polymer science from anywhere in the world and aims to provide an integrated platform for scientific communication that assists the advancement of polymer science and related fields. The journal publishes Original Articles, Notes, Short Communications and Reviews.
Subject areas and topics of particular interest within the journal''s scope include, but are not limited to, those listed below:
Polymer synthesis and reactions
Polymer structures
Physical properties of polymers
Polymer surface and interfaces
Functional polymers
Supramolecular polymers
Self-assembled materials
Biopolymers and bio-related polymer materials
Polymer engineering.