{"title":"生物基愈创木酚强化甲醇分解法回收废弃聚对苯二甲酸乙二醇酯","authors":"Yunkai Yu, Yufei Zhang, Siming Zhu, Qingqing Mei","doi":"10.1002/ange.202503469","DOIUrl":null,"url":null,"abstract":"<p>The global plastic waste crisis, particularly from polyethylene terephthalate (PET), demands sustainable recycling solutions. PET methanolysis offers a promising route to recover high-purity dimethyl terephthalate (DMT), but achieving scalable, cost-effective, and environmentally friendly processes under mild conditions remains challenging. This study introduces a bio-based catalytic system using guaiacol and potassium bicarbonate (KHCO<sub>3</sub>) under mild conditions (120 °C, 0.6 MPa), achieving 94% DMT and 98% ethylene glycol (EG) yields within 2 h. Unlike conventional acid-catalyzed or co-solvent-assisted methanolysis methods, the phenolic hydroxyl group of guaiacol critically stabilizes the tetrahedral intermediate, significantly enhancing catalytic efficiency. The system demonstrates broad versatility across various polyesters and real-world PET waste streams, including mixed textiles and colored plastics, while enabling selective depolymerization. Life cycle assessment (LCA) and techno-economic analysis (TEA) confirm its low carbon footprint, energy efficiency, and industrial viability. This cost-effective and scalable strategy offers a sustainable solution for PET recycling, addressing both environmental and economic challenges while advancing resource circularity in the plastic industry.</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"137 28","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cost-Effective and Low-Carbon Scalable Recycling of Waste Polyethylene Terephthalate Through Bio-Based Guaiacol-Enhanced Methanolysis\",\"authors\":\"Yunkai Yu, Yufei Zhang, Siming Zhu, Qingqing Mei\",\"doi\":\"10.1002/ange.202503469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The global plastic waste crisis, particularly from polyethylene terephthalate (PET), demands sustainable recycling solutions. PET methanolysis offers a promising route to recover high-purity dimethyl terephthalate (DMT), but achieving scalable, cost-effective, and environmentally friendly processes under mild conditions remains challenging. This study introduces a bio-based catalytic system using guaiacol and potassium bicarbonate (KHCO<sub>3</sub>) under mild conditions (120 °C, 0.6 MPa), achieving 94% DMT and 98% ethylene glycol (EG) yields within 2 h. Unlike conventional acid-catalyzed or co-solvent-assisted methanolysis methods, the phenolic hydroxyl group of guaiacol critically stabilizes the tetrahedral intermediate, significantly enhancing catalytic efficiency. The system demonstrates broad versatility across various polyesters and real-world PET waste streams, including mixed textiles and colored plastics, while enabling selective depolymerization. Life cycle assessment (LCA) and techno-economic analysis (TEA) confirm its low carbon footprint, energy efficiency, and industrial viability. This cost-effective and scalable strategy offers a sustainable solution for PET recycling, addressing both environmental and economic challenges while advancing resource circularity in the plastic industry.</p>\",\"PeriodicalId\":7803,\"journal\":{\"name\":\"Angewandte Chemie\",\"volume\":\"137 28\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ange.202503469\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ange.202503469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cost-Effective and Low-Carbon Scalable Recycling of Waste Polyethylene Terephthalate Through Bio-Based Guaiacol-Enhanced Methanolysis
The global plastic waste crisis, particularly from polyethylene terephthalate (PET), demands sustainable recycling solutions. PET methanolysis offers a promising route to recover high-purity dimethyl terephthalate (DMT), but achieving scalable, cost-effective, and environmentally friendly processes under mild conditions remains challenging. This study introduces a bio-based catalytic system using guaiacol and potassium bicarbonate (KHCO3) under mild conditions (120 °C, 0.6 MPa), achieving 94% DMT and 98% ethylene glycol (EG) yields within 2 h. Unlike conventional acid-catalyzed or co-solvent-assisted methanolysis methods, the phenolic hydroxyl group of guaiacol critically stabilizes the tetrahedral intermediate, significantly enhancing catalytic efficiency. The system demonstrates broad versatility across various polyesters and real-world PET waste streams, including mixed textiles and colored plastics, while enabling selective depolymerization. Life cycle assessment (LCA) and techno-economic analysis (TEA) confirm its low carbon footprint, energy efficiency, and industrial viability. This cost-effective and scalable strategy offers a sustainable solution for PET recycling, addressing both environmental and economic challenges while advancing resource circularity in the plastic industry.