{"title":"旧COP的新把戏:脂蛋白分泌中COPII缩聚的细胞生理学","authors":"Xiao Wang, Ke Yang, Xiao-Wei Chen","doi":"10.1002/jcp.70061","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Products encoded by approximately 30% of the mammalian genome exit the endoplasmic reticulum via the coat complex II (COPII) system en route to their functional destination. Among these cargoes, APOB-containing lipoproteins stand out as abundant and bulky secretory particles with profound implications for human health and diseases. Recent insights into the specialized intracellular itinerary of lipoprotein metabolism and transport not only shed light on longstanding questions of lipid dynamics, but also highlight challenges faced by the COPII machinery in accommodating these complex, unconventional cargoes. Emerging evidence supports that tightly-regulated COPII condensation enables maximal capacity of cargo transport, providing a potential solution tailored for efficient lipoprotein delivery without affecting general protein secretion. This distinction suggests that targeting COPII condensation may provide new therapeutic strategies for lipid-associated diseases. Indeed, recent studies have identified manganese as a key modulator of this process, offering novel insights into its physiological relevance and potential translations.</p></div>","PeriodicalId":15220,"journal":{"name":"Journal of Cellular Physiology","volume":"240 7","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Trick for the Old COP: Cellular Physiology of COPII Condensation in Lipoprotein Secretion\",\"authors\":\"Xiao Wang, Ke Yang, Xiao-Wei Chen\",\"doi\":\"10.1002/jcp.70061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Products encoded by approximately 30% of the mammalian genome exit the endoplasmic reticulum via the coat complex II (COPII) system en route to their functional destination. Among these cargoes, APOB-containing lipoproteins stand out as abundant and bulky secretory particles with profound implications for human health and diseases. Recent insights into the specialized intracellular itinerary of lipoprotein metabolism and transport not only shed light on longstanding questions of lipid dynamics, but also highlight challenges faced by the COPII machinery in accommodating these complex, unconventional cargoes. Emerging evidence supports that tightly-regulated COPII condensation enables maximal capacity of cargo transport, providing a potential solution tailored for efficient lipoprotein delivery without affecting general protein secretion. This distinction suggests that targeting COPII condensation may provide new therapeutic strategies for lipid-associated diseases. Indeed, recent studies have identified manganese as a key modulator of this process, offering novel insights into its physiological relevance and potential translations.</p></div>\",\"PeriodicalId\":15220,\"journal\":{\"name\":\"Journal of Cellular Physiology\",\"volume\":\"240 7\",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cellular Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcp.70061\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cellular Physiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcp.70061","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
New Trick for the Old COP: Cellular Physiology of COPII Condensation in Lipoprotein Secretion
Products encoded by approximately 30% of the mammalian genome exit the endoplasmic reticulum via the coat complex II (COPII) system en route to their functional destination. Among these cargoes, APOB-containing lipoproteins stand out as abundant and bulky secretory particles with profound implications for human health and diseases. Recent insights into the specialized intracellular itinerary of lipoprotein metabolism and transport not only shed light on longstanding questions of lipid dynamics, but also highlight challenges faced by the COPII machinery in accommodating these complex, unconventional cargoes. Emerging evidence supports that tightly-regulated COPII condensation enables maximal capacity of cargo transport, providing a potential solution tailored for efficient lipoprotein delivery without affecting general protein secretion. This distinction suggests that targeting COPII condensation may provide new therapeutic strategies for lipid-associated diseases. Indeed, recent studies have identified manganese as a key modulator of this process, offering novel insights into its physiological relevance and potential translations.
期刊介绍:
The Journal of Cellular Physiology publishes reports of high biological significance in areas of eukaryotic cell biology and physiology, focusing on those articles that adopt a molecular mechanistic approach to investigate cell structure and function. There is appreciation for the application of cellular, biochemical, molecular and in vivo genetic approaches, as well as the power of genomics, proteomics, bioinformatics and systems biology. In particular, the Journal encourages submission of high-interest papers investigating the genetic and epigenetic regulation of proliferation and phenotype as well as cell fate and lineage commitment by growth factors, cytokines and their cognate receptors and signal transduction pathways that influence the expression, integration and activities of these physiological mediators. Similarly, the Journal encourages submission of manuscripts exploring the regulation of growth and differentiation by cell adhesion molecules in addition to the interplay between these processes and those induced by growth factors and cytokines. Studies on the genes and processes that regulate cell cycle progression and phase transition in eukaryotic cells, and the mechanisms that determine whether cells enter quiescence, proliferate or undergo apoptosis are also welcomed. Submission of papers that address contributions of the extracellular matrix to cellular phenotypes and physiological control as well as regulatory mechanisms governing fertilization, embryogenesis, gametogenesis, cell fate, lineage commitment, differentiation, development and dynamic parameters of cell motility are encouraged. Finally, the investigation of stem cells and changes that differentiate cancer cells from normal cells including studies on the properties and functions of oncogenes and tumor suppressor genes will remain as one of the major interests of the Journal.