Juliano Ten Kathen Jung, Isabella Pregardier Klann, Bruna Cruz Weber Fulco, Vanessa Angonesi Zborowski, Gilson Zeni, Cristina Wayne Nogueira
{"title":"尽管甘露醇有肾保护作用,但持续的肾氧化应激:暴露于顺铂的雄性和雌性大鼠的社会单一长期应激的影响","authors":"Juliano Ten Kathen Jung, Isabella Pregardier Klann, Bruna Cruz Weber Fulco, Vanessa Angonesi Zborowski, Gilson Zeni, Cristina Wayne Nogueira","doi":"10.1002/cbf.70101","DOIUrl":null,"url":null,"abstract":"<p>Cisplatin (CIS) is a chemotherapeutic agent known for nephrotoxicity through oxidative stress. Cancer treatment is also associated with psychological stress. Repeated exposure to social-single prolonged stress (social-SPS) modulates long-term renal oxidative damage and apoptosis in a sex-dependent manner in rats treated with cisplatin (CIS), despite mannitol's nephroprotective effects. We investigated whether repeated exposure to social-single prolonged stress (social-SPS) modulates long-term renal oxidative damage and apoptosis in male and female rats treated with CIS and mannitol. Male and female Wistar rats were divided into three groups: control, CIS + mannitol, and CIS + mannitol + social-SPS. Mannitol was administered 1 h before CIS (2 mg/kg/day, i.p., for 5 days). Social-SPS was applied at three time points. At postnatal day 68, blood and kidney samples were collected for biochemical and Western blot analyses. Plasma renal biomarkers remained unchanged across groups. However, social-SPS increased renal lipid peroxidation (TBARS) and protein oxidation (carbonyl content) in both sexes. CIS+social-SPS decreased catalase activity and altered SOD, GST, and NPSH in a sex-dependent manner. Only female rats showed increased renal BAX/Bcl2 ratio, indicating apoptosis. In males, Na⁺/K⁺-K-ATPase activity correlated positively with NPSH content. Despite mannitol nephroprotection, social stress exacerbated renal oxidative stress. Female rats were more susceptible to apoptosis, suggesting sex-specific vulnerability to combined CIS and stress exposure. These findings highlight the importance of considering psychological stress and sex as modulators of chemotherapeutic toxicity and may inform future strategies for personalized cancer care.</p>","PeriodicalId":9669,"journal":{"name":"Cell Biochemistry and Function","volume":"43 7","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cbf.70101","citationCount":"0","resultStr":"{\"title\":\"Persistent Renal Oxidative Stress Despite Mannitol Nephroprotection: The Impact of Social-Single Prolonged Stress in Male and Female Rats Exposed to Cisplatin\",\"authors\":\"Juliano Ten Kathen Jung, Isabella Pregardier Klann, Bruna Cruz Weber Fulco, Vanessa Angonesi Zborowski, Gilson Zeni, Cristina Wayne Nogueira\",\"doi\":\"10.1002/cbf.70101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cisplatin (CIS) is a chemotherapeutic agent known for nephrotoxicity through oxidative stress. Cancer treatment is also associated with psychological stress. Repeated exposure to social-single prolonged stress (social-SPS) modulates long-term renal oxidative damage and apoptosis in a sex-dependent manner in rats treated with cisplatin (CIS), despite mannitol's nephroprotective effects. We investigated whether repeated exposure to social-single prolonged stress (social-SPS) modulates long-term renal oxidative damage and apoptosis in male and female rats treated with CIS and mannitol. Male and female Wistar rats were divided into three groups: control, CIS + mannitol, and CIS + mannitol + social-SPS. Mannitol was administered 1 h before CIS (2 mg/kg/day, i.p., for 5 days). Social-SPS was applied at three time points. At postnatal day 68, blood and kidney samples were collected for biochemical and Western blot analyses. Plasma renal biomarkers remained unchanged across groups. However, social-SPS increased renal lipid peroxidation (TBARS) and protein oxidation (carbonyl content) in both sexes. CIS+social-SPS decreased catalase activity and altered SOD, GST, and NPSH in a sex-dependent manner. Only female rats showed increased renal BAX/Bcl2 ratio, indicating apoptosis. In males, Na⁺/K⁺-K-ATPase activity correlated positively with NPSH content. Despite mannitol nephroprotection, social stress exacerbated renal oxidative stress. Female rats were more susceptible to apoptosis, suggesting sex-specific vulnerability to combined CIS and stress exposure. These findings highlight the importance of considering psychological stress and sex as modulators of chemotherapeutic toxicity and may inform future strategies for personalized cancer care.</p>\",\"PeriodicalId\":9669,\"journal\":{\"name\":\"Cell Biochemistry and Function\",\"volume\":\"43 7\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cbf.70101\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Biochemistry and Function\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cbf.70101\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Function","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cbf.70101","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Persistent Renal Oxidative Stress Despite Mannitol Nephroprotection: The Impact of Social-Single Prolonged Stress in Male and Female Rats Exposed to Cisplatin
Cisplatin (CIS) is a chemotherapeutic agent known for nephrotoxicity through oxidative stress. Cancer treatment is also associated with psychological stress. Repeated exposure to social-single prolonged stress (social-SPS) modulates long-term renal oxidative damage and apoptosis in a sex-dependent manner in rats treated with cisplatin (CIS), despite mannitol's nephroprotective effects. We investigated whether repeated exposure to social-single prolonged stress (social-SPS) modulates long-term renal oxidative damage and apoptosis in male and female rats treated with CIS and mannitol. Male and female Wistar rats were divided into three groups: control, CIS + mannitol, and CIS + mannitol + social-SPS. Mannitol was administered 1 h before CIS (2 mg/kg/day, i.p., for 5 days). Social-SPS was applied at three time points. At postnatal day 68, blood and kidney samples were collected for biochemical and Western blot analyses. Plasma renal biomarkers remained unchanged across groups. However, social-SPS increased renal lipid peroxidation (TBARS) and protein oxidation (carbonyl content) in both sexes. CIS+social-SPS decreased catalase activity and altered SOD, GST, and NPSH in a sex-dependent manner. Only female rats showed increased renal BAX/Bcl2 ratio, indicating apoptosis. In males, Na⁺/K⁺-K-ATPase activity correlated positively with NPSH content. Despite mannitol nephroprotection, social stress exacerbated renal oxidative stress. Female rats were more susceptible to apoptosis, suggesting sex-specific vulnerability to combined CIS and stress exposure. These findings highlight the importance of considering psychological stress and sex as modulators of chemotherapeutic toxicity and may inform future strategies for personalized cancer care.
期刊介绍:
Cell Biochemistry and Function publishes original research articles and reviews on the mechanisms whereby molecular and biochemical processes control cellular activity with a particular emphasis on the integration of molecular and cell biology, biochemistry and physiology in the regulation of tissue function in health and disease.
The primary remit of the journal is on mammalian biology both in vivo and in vitro but studies of cells in situ are especially encouraged. Observational and pathological studies will be considered providing they include a rational discussion of the possible molecular and biochemical mechanisms behind them and the immediate impact of these observations to our understanding of mammalian biology.