{"title":"脑机接口在脊髓损伤:一个有前途的治疗策略","authors":"Shizhe Li, Shutao Gao, Yukun Hu, Jianlin Xu, Weibin Sheng","doi":"10.1111/ejn.70183","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The current treatment regimen for spinal cord injury (SCI), a neurological disorder with a high incidence of disability, is based on early surgical decompression and administration of pharmacological agents. However, the efficacy of such an approach remains limited, and most patients have sensory and functional deficits below the level of injury, which seriously affects their quality of life. This necessitates further exploration into effective treatment modalities. In recent years, considerable advancements have been made in developing and utilizing brain–computer interfaces (BCI), which facilitate neurorehabilitation and enhance motor function by transforming brain signals into diverse forms of output commands. BCI-assisted systems provide alternative means of rehabilitative exercise or limb movement in patients with SCI, including electrical stimulation and exoskeleton robots. BCI shows great potential in the rehabilitation of patients with SCI. This review summarizes the current research status and limitations of BCI for SCI to provide novel insights into the concept of multimodal rehabilitation and treatment of SCI and facilitate BCI's future development.</p>\n </div>","PeriodicalId":11993,"journal":{"name":"European Journal of Neuroscience","volume":"62 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Brain–Computer Interfaces in Spinal Cord Injury: A Promising Therapeutic Strategy\",\"authors\":\"Shizhe Li, Shutao Gao, Yukun Hu, Jianlin Xu, Weibin Sheng\",\"doi\":\"10.1111/ejn.70183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The current treatment regimen for spinal cord injury (SCI), a neurological disorder with a high incidence of disability, is based on early surgical decompression and administration of pharmacological agents. However, the efficacy of such an approach remains limited, and most patients have sensory and functional deficits below the level of injury, which seriously affects their quality of life. This necessitates further exploration into effective treatment modalities. In recent years, considerable advancements have been made in developing and utilizing brain–computer interfaces (BCI), which facilitate neurorehabilitation and enhance motor function by transforming brain signals into diverse forms of output commands. BCI-assisted systems provide alternative means of rehabilitative exercise or limb movement in patients with SCI, including electrical stimulation and exoskeleton robots. BCI shows great potential in the rehabilitation of patients with SCI. This review summarizes the current research status and limitations of BCI for SCI to provide novel insights into the concept of multimodal rehabilitation and treatment of SCI and facilitate BCI's future development.</p>\\n </div>\",\"PeriodicalId\":11993,\"journal\":{\"name\":\"European Journal of Neuroscience\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ejn.70183\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ejn.70183","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Brain–Computer Interfaces in Spinal Cord Injury: A Promising Therapeutic Strategy
The current treatment regimen for spinal cord injury (SCI), a neurological disorder with a high incidence of disability, is based on early surgical decompression and administration of pharmacological agents. However, the efficacy of such an approach remains limited, and most patients have sensory and functional deficits below the level of injury, which seriously affects their quality of life. This necessitates further exploration into effective treatment modalities. In recent years, considerable advancements have been made in developing and utilizing brain–computer interfaces (BCI), which facilitate neurorehabilitation and enhance motor function by transforming brain signals into diverse forms of output commands. BCI-assisted systems provide alternative means of rehabilitative exercise or limb movement in patients with SCI, including electrical stimulation and exoskeleton robots. BCI shows great potential in the rehabilitation of patients with SCI. This review summarizes the current research status and limitations of BCI for SCI to provide novel insights into the concept of multimodal rehabilitation and treatment of SCI and facilitate BCI's future development.
期刊介绍:
EJN is the journal of FENS and supports the international neuroscientific community by publishing original high quality research articles and reviews in all fields of neuroscience. In addition, to engage with issues that are of interest to the science community, we also publish Editorials, Meetings Reports and Neuro-Opinions on topics that are of current interest in the fields of neuroscience research and training in science. We have recently established a series of ‘Profiles of Women in Neuroscience’. Our goal is to provide a vehicle for publications that further the understanding of the structure and function of the nervous system in both health and disease and to provide a vehicle to engage the neuroscience community. As the official journal of FENS, profits from the journal are re-invested in the neuroscientific community through the activities of FENS.