Gabriela M. Fonseca, Felício B. Barros, Rafael M. Lins
{"title":"断裂力学中全局-局部富集广义有限元法的后验误差估计","authors":"Gabriela M. Fonseca, Felício B. Barros, Rafael M. Lins","doi":"10.1002/nme.70079","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This work presents, for the first time, an a posteriori error estimator specifically developed for the Generalized Finite Element Method with Global-Local Enrichments (<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mtext>GFEM</mtext>\n </mrow>\n <mrow>\n <mi>g</mi>\n <mi>l</mi>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {\\mathrm{GFEM}}^{gl} $$</annotation>\n </semantics></math>). The proposed estimator is built upon a recovery procedure originally formulated for the Generalized/eXtended Finite Element Method (G/XFEM), where a recovered stress field is computed using a block-diagonal system of equations. Designed for 2D Linear Elastic Fracture Mechanics problems, the estimator effectively evaluates errors in the energy norm at both the local and global scales of <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mtext>GFEM</mtext>\n </mrow>\n <mrow>\n <mi>g</mi>\n <mi>l</mi>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {\\mathrm{GFEM}}^{gl} $$</annotation>\n </semantics></math>, accounting for the particularities of its enrichment strategy. Additionally, this study incorporates the stable version of <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mtext>GFEM</mtext>\n </mrow>\n <mrow>\n <mi>g</mi>\n <mi>l</mi>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {\\mathrm{GFEM}}^{gl} $$</annotation>\n </semantics></math> (<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mtext>SGFEM</mtext>\n </mrow>\n <mrow>\n <mi>g</mi>\n <mi>l</mi>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {\\mathrm{SGFEM}}^{gl} $$</annotation>\n </semantics></math>) to improve convergence and accuracy in the approximate solution. Numerical results, considering variations in the local domain size within a mixed-mode problem, validate the efficiency and reliability of the proposed error estimator. Effectivity, indices close to unity and precise error distributions confirm the robustness of the approach, even in scenarios with elevated error levels.</p>\n </div>","PeriodicalId":13699,"journal":{"name":"International Journal for Numerical Methods in Engineering","volume":"126 13","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An a Posteriori Error Estimator for the Generalized Finite Element Method With Global-Local Enrichments in Fracture Mechanics\",\"authors\":\"Gabriela M. Fonseca, Felício B. Barros, Rafael M. Lins\",\"doi\":\"10.1002/nme.70079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>This work presents, for the first time, an a posteriori error estimator specifically developed for the Generalized Finite Element Method with Global-Local Enrichments (<span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mrow>\\n <mtext>GFEM</mtext>\\n </mrow>\\n <mrow>\\n <mi>g</mi>\\n <mi>l</mi>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{GFEM}}^{gl} $$</annotation>\\n </semantics></math>). The proposed estimator is built upon a recovery procedure originally formulated for the Generalized/eXtended Finite Element Method (G/XFEM), where a recovered stress field is computed using a block-diagonal system of equations. Designed for 2D Linear Elastic Fracture Mechanics problems, the estimator effectively evaluates errors in the energy norm at both the local and global scales of <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mrow>\\n <mtext>GFEM</mtext>\\n </mrow>\\n <mrow>\\n <mi>g</mi>\\n <mi>l</mi>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{GFEM}}^{gl} $$</annotation>\\n </semantics></math>, accounting for the particularities of its enrichment strategy. Additionally, this study incorporates the stable version of <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mrow>\\n <mtext>GFEM</mtext>\\n </mrow>\\n <mrow>\\n <mi>g</mi>\\n <mi>l</mi>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{GFEM}}^{gl} $$</annotation>\\n </semantics></math> (<span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mrow>\\n <mtext>SGFEM</mtext>\\n </mrow>\\n <mrow>\\n <mi>g</mi>\\n <mi>l</mi>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{SGFEM}}^{gl} $$</annotation>\\n </semantics></math>) to improve convergence and accuracy in the approximate solution. Numerical results, considering variations in the local domain size within a mixed-mode problem, validate the efficiency and reliability of the proposed error estimator. Effectivity, indices close to unity and precise error distributions confirm the robustness of the approach, even in scenarios with elevated error levels.</p>\\n </div>\",\"PeriodicalId\":13699,\"journal\":{\"name\":\"International Journal for Numerical Methods in Engineering\",\"volume\":\"126 13\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical Methods in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/nme.70079\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nme.70079","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
这项工作首次提出了一种专门为具有全局-局部富集的广义有限元法(GFEM g l $$ {\mathrm{GFEM}}^{gl} $$)开发的后验误差估计器。所提出的估计是建立在最初为广义/扩展有限元法(G/XFEM)制定的恢复程序之上的,其中恢复的应力场是使用对角线方程组计算的。该估计器设计用于二维线弹性断裂力学问题,可有效地评估GFEM在局部和全局尺度上的能量范数误差[1 $$ {\mathrm{GFEM}}^{gl} $$]。考虑其富集策略的特殊性。此外,本研究纳入了稳定版的GFEM g 1 $$ {\mathrm{GFEM}}^{gl} $$ (SGFEM g)L $$ {\mathrm{SGFEM}}^{gl} $$)以提高近似解的收敛性和准确性。数值结果表明,考虑混合模式问题中局部区域大小的变化,该误差估计器的有效性和可靠性得到了验证。效率、接近统一的指数和精确的误差分布证实了该方法的鲁棒性,即使在误差水平较高的情况下也是如此。
An a Posteriori Error Estimator for the Generalized Finite Element Method With Global-Local Enrichments in Fracture Mechanics
This work presents, for the first time, an a posteriori error estimator specifically developed for the Generalized Finite Element Method with Global-Local Enrichments (). The proposed estimator is built upon a recovery procedure originally formulated for the Generalized/eXtended Finite Element Method (G/XFEM), where a recovered stress field is computed using a block-diagonal system of equations. Designed for 2D Linear Elastic Fracture Mechanics problems, the estimator effectively evaluates errors in the energy norm at both the local and global scales of , accounting for the particularities of its enrichment strategy. Additionally, this study incorporates the stable version of () to improve convergence and accuracy in the approximate solution. Numerical results, considering variations in the local domain size within a mixed-mode problem, validate the efficiency and reliability of the proposed error estimator. Effectivity, indices close to unity and precise error distributions confirm the robustness of the approach, even in scenarios with elevated error levels.
期刊介绍:
The International Journal for Numerical Methods in Engineering publishes original papers describing significant, novel developments in numerical methods that are applicable to engineering problems.
The Journal is known for welcoming contributions in a wide range of areas in computational engineering, including computational issues in model reduction, uncertainty quantification, verification and validation, inverse analysis and stochastic methods, optimisation, element technology, solution techniques and parallel computing, damage and fracture, mechanics at micro and nano-scales, low-speed fluid dynamics, fluid-structure interaction, electromagnetics, coupled diffusion phenomena, and error estimation and mesh generation. It is emphasized that this is by no means an exhaustive list, and particularly papers on multi-scale, multi-physics or multi-disciplinary problems, and on new, emerging topics are welcome.