{"title":"基于高速注入锁量子级联激光器的自探测中红外双梳光谱","authors":"Yu Ma, Dapeng Wu, Ruixin Huang, Shichen Zhang, Binru Zhou, Zejun Ma, Yongqiang Sun, Junqi Liu, Ning Zhuo, Jinchuan Zhang, Shenqiang Zhai, Shuman Liu, Fengqi Liu, Manijeh Razeghi, Quanyong Lu","doi":"10.1002/adpr.202500062","DOIUrl":null,"url":null,"abstract":"<p>Dual-comb spectrometer based on quantum cascade lasers (QCLs) is gaining fast development and revolutionizing the precision measurement with high-frequency and temporal resolutions. In these measurements, high-bandwidth photodetectors are normally used for signal acquisition and processing, which complicates the measurement system. QCL is well-known for its picosecond gain-recovery time with an intrinsic bandwidth of tens of GHz. In this work, a compact self-detecting dual-comb spectroscopy (DCS) is demonstrated based on dispersion-engineered, high-speed packaged QCLs under coherent injection locking. The laser source is designed and fabricated into a hybrid-monolithic-integrated waveguide and epi-down packaged on a wideband-designed submount to fully explore the high-speed feature up to fourth-order harmonic state with a cutoff frequency of 40 GHz. The effective radio frequency (RF) injection locking diminishes the issue of optical feedback and enables high-bandwidth self-detection based on QCLs. Clear and stable multiheterodyne signal corresponding to a spectral range of 68 cm<sup>−1</sup> and narrow comb tooth linewidth of ≈10 kHz is observed without using external detector or numerical process. The demonstrated broadband, high-power, self-detecting mid-infrared QCL DCS has a great potential for future applications of molecular sensing and spectroscopy.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"6 7","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202500062","citationCount":"0","resultStr":"{\"title\":\"Self-Detecting Mid-Infrared Dual-Comb Spectroscopy Based on High-Speed Injection-Locked Quantum Cascade Lasers\",\"authors\":\"Yu Ma, Dapeng Wu, Ruixin Huang, Shichen Zhang, Binru Zhou, Zejun Ma, Yongqiang Sun, Junqi Liu, Ning Zhuo, Jinchuan Zhang, Shenqiang Zhai, Shuman Liu, Fengqi Liu, Manijeh Razeghi, Quanyong Lu\",\"doi\":\"10.1002/adpr.202500062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Dual-comb spectrometer based on quantum cascade lasers (QCLs) is gaining fast development and revolutionizing the precision measurement with high-frequency and temporal resolutions. In these measurements, high-bandwidth photodetectors are normally used for signal acquisition and processing, which complicates the measurement system. QCL is well-known for its picosecond gain-recovery time with an intrinsic bandwidth of tens of GHz. In this work, a compact self-detecting dual-comb spectroscopy (DCS) is demonstrated based on dispersion-engineered, high-speed packaged QCLs under coherent injection locking. The laser source is designed and fabricated into a hybrid-monolithic-integrated waveguide and epi-down packaged on a wideband-designed submount to fully explore the high-speed feature up to fourth-order harmonic state with a cutoff frequency of 40 GHz. The effective radio frequency (RF) injection locking diminishes the issue of optical feedback and enables high-bandwidth self-detection based on QCLs. Clear and stable multiheterodyne signal corresponding to a spectral range of 68 cm<sup>−1</sup> and narrow comb tooth linewidth of ≈10 kHz is observed without using external detector or numerical process. The demonstrated broadband, high-power, self-detecting mid-infrared QCL DCS has a great potential for future applications of molecular sensing and spectroscopy.</p>\",\"PeriodicalId\":7263,\"journal\":{\"name\":\"Advanced Photonics Research\",\"volume\":\"6 7\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202500062\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Photonics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adpr.202500062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Photonics Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adpr.202500062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Self-Detecting Mid-Infrared Dual-Comb Spectroscopy Based on High-Speed Injection-Locked Quantum Cascade Lasers
Dual-comb spectrometer based on quantum cascade lasers (QCLs) is gaining fast development and revolutionizing the precision measurement with high-frequency and temporal resolutions. In these measurements, high-bandwidth photodetectors are normally used for signal acquisition and processing, which complicates the measurement system. QCL is well-known for its picosecond gain-recovery time with an intrinsic bandwidth of tens of GHz. In this work, a compact self-detecting dual-comb spectroscopy (DCS) is demonstrated based on dispersion-engineered, high-speed packaged QCLs under coherent injection locking. The laser source is designed and fabricated into a hybrid-monolithic-integrated waveguide and epi-down packaged on a wideband-designed submount to fully explore the high-speed feature up to fourth-order harmonic state with a cutoff frequency of 40 GHz. The effective radio frequency (RF) injection locking diminishes the issue of optical feedback and enables high-bandwidth self-detection based on QCLs. Clear and stable multiheterodyne signal corresponding to a spectral range of 68 cm−1 and narrow comb tooth linewidth of ≈10 kHz is observed without using external detector or numerical process. The demonstrated broadband, high-power, self-detecting mid-infrared QCL DCS has a great potential for future applications of molecular sensing and spectroscopy.