Dr. Jie Zhao, Yidan Li, Huidan Zhang, Ruying Lv, Prof. Le Yu, Prof. Silvia Marchesan, Dong Yang
{"title":"内页封面:层次自组装阴离子配位驱动凝胶分离和电传感(新)。化学28/2025)","authors":"Dr. Jie Zhao, Yidan Li, Huidan Zhang, Ruying Lv, Prof. Le Yu, Prof. Silvia Marchesan, Dong Yang","doi":"10.1002/ange.202510921","DOIUrl":null,"url":null,"abstract":"<p>The phase separation of self-assembled hosts in a gel from liquid guests is a convenient approach for heterogeneous encapsulation. In their Communication (e202504207), Dong Yang and co-workers report a class of gels formed through hierarchical self-assembly of “aniono” helicates, which can be utilized as filling material in columns and show the ability to selectively encapsulate and release choline. This study introduces the concept of flowing a solution containing guests through a host-containing gel for effective guest separation. The process of guest binding could be also monitored in real time via electrical characterization.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"137 28","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ange.202510921","citationCount":"0","resultStr":"{\"title\":\"Inside Front Cover: Hierarchically Self-Assembled Anion-Coordination-Driven Gels for Guest Segregation and Electrical Sensing (Angew. Chem. 28/2025)\",\"authors\":\"Dr. Jie Zhao, Yidan Li, Huidan Zhang, Ruying Lv, Prof. Le Yu, Prof. Silvia Marchesan, Dong Yang\",\"doi\":\"10.1002/ange.202510921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The phase separation of self-assembled hosts in a gel from liquid guests is a convenient approach for heterogeneous encapsulation. In their Communication (e202504207), Dong Yang and co-workers report a class of gels formed through hierarchical self-assembly of “aniono” helicates, which can be utilized as filling material in columns and show the ability to selectively encapsulate and release choline. This study introduces the concept of flowing a solution containing guests through a host-containing gel for effective guest separation. The process of guest binding could be also monitored in real time via electrical characterization.\\n\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":7803,\"journal\":{\"name\":\"Angewandte Chemie\",\"volume\":\"137 28\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ange.202510921\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ange.202510921\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ange.202510921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Inside Front Cover: Hierarchically Self-Assembled Anion-Coordination-Driven Gels for Guest Segregation and Electrical Sensing (Angew. Chem. 28/2025)
The phase separation of self-assembled hosts in a gel from liquid guests is a convenient approach for heterogeneous encapsulation. In their Communication (e202504207), Dong Yang and co-workers report a class of gels formed through hierarchical self-assembly of “aniono” helicates, which can be utilized as filling material in columns and show the ability to selectively encapsulate and release choline. This study introduces the concept of flowing a solution containing guests through a host-containing gel for effective guest separation. The process of guest binding could be also monitored in real time via electrical characterization.