Inge Varik, Katariina Johanna Saretok, Kristine Rosenberg, Ileana Quintero, Maija Puhka, Nataliia Volkova, Aleksander Trošin, Paolo Guazzi, Agne Velthut-Meikas
{"title":"人类排卵前卵泡液的大小细胞外囊泡显示不同的ncRNA货物谱和对KGN颗粒细胞的不同影响","authors":"Inge Varik, Katariina Johanna Saretok, Kristine Rosenberg, Ileana Quintero, Maija Puhka, Nataliia Volkova, Aleksander Trošin, Paolo Guazzi, Agne Velthut-Meikas","doi":"10.1002/jev2.70119","DOIUrl":null,"url":null,"abstract":"<p>Follicular fluid extracellular vesicles (FF EVs) facilitate communication between oocytes and somatic cells within the ovarian follicle, playing a pivotal role in follicular development. This study highlights the molecular and functional distinctions between small (SEV) and large (LEV) FF EV subpopulations, revealing their specialised regulatory roles in granulosa cell (GC) biology and their consequential impact on ovarian function. Single-EV profiling uncovered distinct tetraspanin distributions, with LEVs containing a lower proportion of CD9/CD63/CD81-positive particles compared to SEVs. Fluorescent labelling confirmed uptake of both SEVs and LEVs by GCs, supporting their capacity to impact cellular behaviour. Functionally, LEVs increased testosterone production by GCs, whilst SEVs had no effect on steroid hormone secretion, suggesting a specific role for LEVs in androgen biosynthesis. Transcriptomic analysis revealed extensive SEV-induced changes in GC gene expression, affecting pathways involved in transcription, TGF-β signalling, extracellular matrix (ECM) remodelling and cell cycle regulation. In contrast, LEVs elicited minimal transcriptional changes, primarily modulating genes associated with immune regulation and oxidative stress defence. Small RNA sequencing further revealed distinct non-coding RNA (ncRNA) profiles, with SEVs enriched in miRNAs targeting pathways critical for GC differentiation, whilst LEVs carried higher levels of piRNAs implicated in maintaining genomic stability. These findings advance our understanding of FF EV-mediated intercellular communication and underscore the importance of investigating EV subpopulations independently.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"14 7","pages":""},"PeriodicalIF":14.5000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jev2.70119","citationCount":"0","resultStr":"{\"title\":\"Small and Large Extracellular Vesicles From Human Preovulatory Follicular Fluid Display Distinct ncRNA Cargo Profiles and Differential Effects on KGN Granulosa Cells\",\"authors\":\"Inge Varik, Katariina Johanna Saretok, Kristine Rosenberg, Ileana Quintero, Maija Puhka, Nataliia Volkova, Aleksander Trošin, Paolo Guazzi, Agne Velthut-Meikas\",\"doi\":\"10.1002/jev2.70119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Follicular fluid extracellular vesicles (FF EVs) facilitate communication between oocytes and somatic cells within the ovarian follicle, playing a pivotal role in follicular development. This study highlights the molecular and functional distinctions between small (SEV) and large (LEV) FF EV subpopulations, revealing their specialised regulatory roles in granulosa cell (GC) biology and their consequential impact on ovarian function. Single-EV profiling uncovered distinct tetraspanin distributions, with LEVs containing a lower proportion of CD9/CD63/CD81-positive particles compared to SEVs. Fluorescent labelling confirmed uptake of both SEVs and LEVs by GCs, supporting their capacity to impact cellular behaviour. Functionally, LEVs increased testosterone production by GCs, whilst SEVs had no effect on steroid hormone secretion, suggesting a specific role for LEVs in androgen biosynthesis. Transcriptomic analysis revealed extensive SEV-induced changes in GC gene expression, affecting pathways involved in transcription, TGF-β signalling, extracellular matrix (ECM) remodelling and cell cycle regulation. In contrast, LEVs elicited minimal transcriptional changes, primarily modulating genes associated with immune regulation and oxidative stress defence. Small RNA sequencing further revealed distinct non-coding RNA (ncRNA) profiles, with SEVs enriched in miRNAs targeting pathways critical for GC differentiation, whilst LEVs carried higher levels of piRNAs implicated in maintaining genomic stability. These findings advance our understanding of FF EV-mediated intercellular communication and underscore the importance of investigating EV subpopulations independently.</p>\",\"PeriodicalId\":15811,\"journal\":{\"name\":\"Journal of Extracellular Vesicles\",\"volume\":\"14 7\",\"pages\":\"\"},\"PeriodicalIF\":14.5000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jev2.70119\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Extracellular Vesicles\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://isevjournals.onlinelibrary.wiley.com/doi/10.1002/jev2.70119\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Extracellular Vesicles","FirstCategoryId":"3","ListUrlMain":"https://isevjournals.onlinelibrary.wiley.com/doi/10.1002/jev2.70119","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Small and Large Extracellular Vesicles From Human Preovulatory Follicular Fluid Display Distinct ncRNA Cargo Profiles and Differential Effects on KGN Granulosa Cells
Follicular fluid extracellular vesicles (FF EVs) facilitate communication between oocytes and somatic cells within the ovarian follicle, playing a pivotal role in follicular development. This study highlights the molecular and functional distinctions between small (SEV) and large (LEV) FF EV subpopulations, revealing their specialised regulatory roles in granulosa cell (GC) biology and their consequential impact on ovarian function. Single-EV profiling uncovered distinct tetraspanin distributions, with LEVs containing a lower proportion of CD9/CD63/CD81-positive particles compared to SEVs. Fluorescent labelling confirmed uptake of both SEVs and LEVs by GCs, supporting their capacity to impact cellular behaviour. Functionally, LEVs increased testosterone production by GCs, whilst SEVs had no effect on steroid hormone secretion, suggesting a specific role for LEVs in androgen biosynthesis. Transcriptomic analysis revealed extensive SEV-induced changes in GC gene expression, affecting pathways involved in transcription, TGF-β signalling, extracellular matrix (ECM) remodelling and cell cycle regulation. In contrast, LEVs elicited minimal transcriptional changes, primarily modulating genes associated with immune regulation and oxidative stress defence. Small RNA sequencing further revealed distinct non-coding RNA (ncRNA) profiles, with SEVs enriched in miRNAs targeting pathways critical for GC differentiation, whilst LEVs carried higher levels of piRNAs implicated in maintaining genomic stability. These findings advance our understanding of FF EV-mediated intercellular communication and underscore the importance of investigating EV subpopulations independently.
期刊介绍:
The Journal of Extracellular Vesicles is an open access research publication that focuses on extracellular vesicles, including microvesicles, exosomes, ectosomes, and apoptotic bodies. It serves as the official journal of the International Society for Extracellular Vesicles and aims to facilitate the exchange of data, ideas, and information pertaining to the chemistry, biology, and applications of extracellular vesicles. The journal covers various aspects such as the cellular and molecular mechanisms of extracellular vesicles biogenesis, technological advancements in their isolation, quantification, and characterization, the role and function of extracellular vesicles in biology, stem cell-derived extracellular vesicles and their biology, as well as the application of extracellular vesicles for pharmacological, immunological, or genetic therapies.
The Journal of Extracellular Vesicles is widely recognized and indexed by numerous services, including Biological Abstracts, BIOSIS Previews, Chemical Abstracts Service (CAS), Current Contents/Life Sciences, Directory of Open Access Journals (DOAJ), Journal Citation Reports/Science Edition, Google Scholar, ProQuest Natural Science Collection, ProQuest SciTech Collection, SciTech Premium Collection, PubMed Central/PubMed, Science Citation Index Expanded, ScienceOpen, and Scopus.