Sandra Sajeev, Mewin Vincent, Piotr Garbacz, Marcin Strawski, Chunyu Zhu, Yoshitaka Aoki and Damian Kowalski
{"title":"镍取代在锰钙钛矿Li-O2电池中的作用","authors":"Sandra Sajeev, Mewin Vincent, Piotr Garbacz, Marcin Strawski, Chunyu Zhu, Yoshitaka Aoki and Damian Kowalski","doi":"10.1039/D5LF00050E","DOIUrl":null,"url":null,"abstract":"<p >A fundamental understanding of the electrochemical processes in Li–O<small><sub>2</sub></small> batteries is critical for the further development and commercialization of Li–O<small><sub>2</sub></small> and air-breathing battery technology. This study explores the electrochemistry of nickel-substituted manganite perovskites, La<small><sub>0.7</sub></small>Sr<small><sub>0.3</sub></small>Mn<small><sub>1−<em>x</em></sub></small>Ni<small><sub><em>x</em></sub></small>O<small><sub>3</sub></small> (<em>x</em> = 0, 0.1, 0.3, 0.5), which were subsequently used as catalysts in Li–O<small><sub>2</sub></small> battery operating in 1 mol dm<small><sup>−3</sup></small> bis trifluoromethane sulfonimide lithium salt (LiTFSi) in tetra ethylene glycol dimethyl ether (TEGDME) electrolyte. <em>In situ</em> Raman spectroscopy fingerprints on the discharge products correlated with charge–discharge profiles revealed that the electrochemical reaction pathway involves the formation of superoxide (LiO<small><sub>2</sub></small>) followed by reduction to lithium peroxide (Li<small><sub>2</sub></small>O<small><sub>2</sub></small>) during the battery discharge and corresponding two-step oxidation process in the charge phase. The superoxide (LiO<small><sub>2</sub></small>) was exceptionally stable for more than 2 h, which is in contrast to previous studies and expectations for short-lifetime intermediate formations. Electrochemical analysis revealed a significant improvement in the Li–O<small><sub>2</sub></small> battery performance for oxygen electrodes substituted with 10% of nickel, reaching a specific capacity of 3554 mAh g<small><sup>−1</sup></small>. Substitution of Mn with Ni in La<small><sub>0.7</sub></small>Sr<small><sub>0.3</sub></small>Mn<small><sub>0.9</sub></small>Ni<small><sub>0.1</sub></small>O<small><sub>3</sub></small> led to enhanced charge transfer kinetics due to a high surface population of the low valence state of B-site ions (Mn<small><sup>3+</sup></small>/Mn<small><sup>4+</sup></small> ratio) accommodating the presence of e<small><sub>g</sub></small><small><sup>1</sup></small> electrons in line with Jahn–Teller disordered metal–oxygen octahedra effect. The current finding offers new insights for designing of aprotic LiO<small><sub>2</sub></small> batteries.</p>","PeriodicalId":101138,"journal":{"name":"RSC Applied Interfaces","volume":" 4","pages":" 1051-1058"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/lf/d5lf00050e?page=search","citationCount":"0","resultStr":"{\"title\":\"The role of Ni substitution in manganite perovskite Li–O2 battery†\",\"authors\":\"Sandra Sajeev, Mewin Vincent, Piotr Garbacz, Marcin Strawski, Chunyu Zhu, Yoshitaka Aoki and Damian Kowalski\",\"doi\":\"10.1039/D5LF00050E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >A fundamental understanding of the electrochemical processes in Li–O<small><sub>2</sub></small> batteries is critical for the further development and commercialization of Li–O<small><sub>2</sub></small> and air-breathing battery technology. This study explores the electrochemistry of nickel-substituted manganite perovskites, La<small><sub>0.7</sub></small>Sr<small><sub>0.3</sub></small>Mn<small><sub>1−<em>x</em></sub></small>Ni<small><sub><em>x</em></sub></small>O<small><sub>3</sub></small> (<em>x</em> = 0, 0.1, 0.3, 0.5), which were subsequently used as catalysts in Li–O<small><sub>2</sub></small> battery operating in 1 mol dm<small><sup>−3</sup></small> bis trifluoromethane sulfonimide lithium salt (LiTFSi) in tetra ethylene glycol dimethyl ether (TEGDME) electrolyte. <em>In situ</em> Raman spectroscopy fingerprints on the discharge products correlated with charge–discharge profiles revealed that the electrochemical reaction pathway involves the formation of superoxide (LiO<small><sub>2</sub></small>) followed by reduction to lithium peroxide (Li<small><sub>2</sub></small>O<small><sub>2</sub></small>) during the battery discharge and corresponding two-step oxidation process in the charge phase. The superoxide (LiO<small><sub>2</sub></small>) was exceptionally stable for more than 2 h, which is in contrast to previous studies and expectations for short-lifetime intermediate formations. Electrochemical analysis revealed a significant improvement in the Li–O<small><sub>2</sub></small> battery performance for oxygen electrodes substituted with 10% of nickel, reaching a specific capacity of 3554 mAh g<small><sup>−1</sup></small>. Substitution of Mn with Ni in La<small><sub>0.7</sub></small>Sr<small><sub>0.3</sub></small>Mn<small><sub>0.9</sub></small>Ni<small><sub>0.1</sub></small>O<small><sub>3</sub></small> led to enhanced charge transfer kinetics due to a high surface population of the low valence state of B-site ions (Mn<small><sup>3+</sup></small>/Mn<small><sup>4+</sup></small> ratio) accommodating the presence of e<small><sub>g</sub></small><small><sup>1</sup></small> electrons in line with Jahn–Teller disordered metal–oxygen octahedra effect. The current finding offers new insights for designing of aprotic LiO<small><sub>2</sub></small> batteries.</p>\",\"PeriodicalId\":101138,\"journal\":{\"name\":\"RSC Applied Interfaces\",\"volume\":\" 4\",\"pages\":\" 1051-1058\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/lf/d5lf00050e?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC Applied Interfaces\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/lf/d5lf00050e\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Applied Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/lf/d5lf00050e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
对锂氧电池电化学过程的基本理解对于锂氧电池和空气呼吸电池技术的进一步发展和商业化至关重要。本研究探讨了镍取代锰矿钙钛矿La0.7Sr0.3Mn1−xNixO3 (x = 0,0.1, 0.3, 0.5)的电化学性质,并将其作为催化剂应用于Li-O2电池中,该电池使用1 mol dm−3双三氟甲烷磺酰亚胺锂盐(LiTFSi)在四乙二醇二甲醚(TEGDME)电解质中工作。与充放电曲线相关的放电产物原位拉曼光谱指纹图谱揭示了电池放电过程中形成超氧化物(LiO2)并还原为过氧化锂(Li2O2)的电化学反应途径,以及充电阶段相应的两步氧化过程。超氧化物(LiO2)在2小时以上的时间内异常稳定,这与之前的研究和对短寿命中间地层的预期形成了对比。电化学分析表明,用10%的镍取代氧电极可以显著改善锂氧电池的性能,达到3554 mAh g−1的比容量。在La0.7Sr0.3Mn0.9Ni0.1O3中用Ni取代Mn导致电荷转移动力学增强,这是由于b位离子(Mn3+/Mn4+比)的低价态的高表面居群容纳了eg1电子的存在,符合Jahn-Teller无序金属-氧八面体效应。目前的发现为非质子锂离子电池的设计提供了新的见解。
The role of Ni substitution in manganite perovskite Li–O2 battery†
A fundamental understanding of the electrochemical processes in Li–O2 batteries is critical for the further development and commercialization of Li–O2 and air-breathing battery technology. This study explores the electrochemistry of nickel-substituted manganite perovskites, La0.7Sr0.3Mn1−xNixO3 (x = 0, 0.1, 0.3, 0.5), which were subsequently used as catalysts in Li–O2 battery operating in 1 mol dm−3 bis trifluoromethane sulfonimide lithium salt (LiTFSi) in tetra ethylene glycol dimethyl ether (TEGDME) electrolyte. In situ Raman spectroscopy fingerprints on the discharge products correlated with charge–discharge profiles revealed that the electrochemical reaction pathway involves the formation of superoxide (LiO2) followed by reduction to lithium peroxide (Li2O2) during the battery discharge and corresponding two-step oxidation process in the charge phase. The superoxide (LiO2) was exceptionally stable for more than 2 h, which is in contrast to previous studies and expectations for short-lifetime intermediate formations. Electrochemical analysis revealed a significant improvement in the Li–O2 battery performance for oxygen electrodes substituted with 10% of nickel, reaching a specific capacity of 3554 mAh g−1. Substitution of Mn with Ni in La0.7Sr0.3Mn0.9Ni0.1O3 led to enhanced charge transfer kinetics due to a high surface population of the low valence state of B-site ions (Mn3+/Mn4+ ratio) accommodating the presence of eg1 electrons in line with Jahn–Teller disordered metal–oxygen octahedra effect. The current finding offers new insights for designing of aprotic LiO2 batteries.